Cross-polytope

In geometry, a cross-polytope, or orthoplex, is a regular, convex polytope that exists in any number of dimensions. The vertices of a cross-polytope consist of all permutations of (±1, 0, 0, …, 0). The cross-polytope is the convex hull of its vertices. (Note: some authors define a convex-polytope only as the boundary of this region).

In 1-dimension the cross-polytope is simply the line segment [−1, +1], in 2-dimensions it is a square (or diamond) with vertices {(±1, 0), (0, ±1)}. In 3-dimensions it is an octahedron—one of the five regular polyhedra known as the Platonic solids. Higher dimensional cross-polytopes are generalizations of these.

Missing image
Square_diamond_(shape).png
A 2-dimensional cross-polytope

A 3-dimensional cross-polytope
2 dimensions 3 dimensions

The cross-polytope can also be characterized as the dual polytope of the hypercube.

4 dimensions

The 4-dimensional cross-polytope also goes by the name hexadecachoron or 16-cell. It is one of six regular convex polychora. These polychora where first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century.

The hexadecachoron has 16 cells all of which are regular tetrahedra. It has 32 triangular faces, 24 edges, and 8 vertices. The 24 edges bound 6 squares lying in the 6 coordinate planes. The Schläfli symbol of the hexadecachoron is {3,3,4}. The vertex figures are all regular octahedra. There are 8 tetrahedra, 12 triangles, and 6 edges meeting at every vertex. There are 4 tetrahedra and 4 triangles meeting at every edge. The dual polychoron of the hexadecachoron is the tesseract (the 4-dimensional hypercube).

When interpreted as quaternions the vertices of the hexadecachoron are the eight unit quaternions {±1, ±i, ±j, ±k}. These form a group under quaternionic multiplication called the quaternion group. (Note that the vertices of the 2-dimensional cross-polytope {±1, ±i} form a group under complex multiplication).

Template:4D regular polytopes

Higher dimensions

In n > 4 dimensions there are only three regular polytopes: the simplex, hypercube, and the cross-polytope, of which the last two are dual. The simplex is self-dual.

The n-dimensional cross-polytope has 2n vertices, and 2n facets (n−1 dimensional components) all of which are n−1 simplices. The vertex figures are all n−1 cross-polytopes. The Schläfli symbol of the cross-polytope is {3,3,…,3,4}.

The number of k-dimensional components (vertices, edges, faces, …, facets) in an n-dimensional cross-polytope is given by (see binomial coefficient):

<math>2^{k+1}{n \choose {k+1}}<math>

For the first few n and k we have:

n\k 0 1 2 3 4
1 2
2 4 4
3 6 12 8
4 8 24 32 16
5 10 40 80 80 32

See also

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools