Quaternion group

Missing image
GroupDiagramQ8.png
Cycle diagram of Q. Each color specifies a series of powers of any element connected to the identity element (1). For example, the cycle in red reflects the fact that i 2 = −1, i 3 = −i  and i 4 = 1. The red cycle also reflects the fact that (−i )2 = −1, (−i )3 = i  and (−i )4 = 1.

In group theory, the quaternion group is a non-abelian group of order 8 with a number of interesting properties. The quaternion group, often denoted by Q, is usually written in multiplicative form, with the following 8 elements

Q = {1, −1, i, −i, j, −j, k, −k}

Here 1 is the identity element, (−1)2 = 1, and (−1)a = a(−1) = −a for all a in Q. The remaining multiplication rules can be obtained from the following relation:

<math>i^2 = j^2 = k^2 = ijk = -1<math>

The entire multiplication table for Q is given by:

1 i j k −1 −i −j −k
i −1 k −j −i 1 −k j
j −k −1 i −j k 1 −i
k j −i −1 −k −j i 1
−1 −i −j −k 1 i j k
−i 1 −k j i −1 k −j
−j k 1 −i j −k −1 i
−k −j i 1 k j −i −1

Note that the resulting group is non-commutative; for example ij = −ji. Q has the unusual property of being Hamiltonian: every subgroup of Q is a normal subgroup, but the group is non-abelian. Every Hamiltonian group contains a copy of Q.

In abstract algebra, one can construct a real 4-dimensional vector space with basis {1, i, j, k} and turn it into an associative algebra by using the above multiplication table and distributivity. The result is a skew field called the quaternions. Note that this is not quite the group algebra on Q (which would be 8-dimensional). Conversely, one can start with the quaternions and define the quaternion group as the multiplicative subgroup consisting of the eight elements {1, −1, i, −i, j, −j, k, −k}.

Note that i, j, and k all have order 4 in Q and any two of them generate the entire group. Q has the presentation

<math>\langle x,y \mid x^4 = 1, x^2 = y^2, yxy^{-1} = x^{-1}\rangle<math>

One may take, for instance, x = i and y = j.

The center of Q is the subgroup {±1}. The factor group Q/{±1} is isomorphic to the Klein four-group V. The inner automorphism group of Q is isomorphic to Q modulo its center, and is therefore also isomorphic to the Klein four-group. The full automorphism group of Q is isomorphic to S4, the symmetric group on four letters. The outer automorphism group of Q is then S4/V which is isomorphic to S3.

Generalized quaternion group

A group is called a generalized quaternion group if it has a presentation

<math>\langle x,y \mid x^{2^{n-1}} = 1, x^{2^{n-2}} = y^2, yxy^{-1} = x^{-1}\rangle<math>

for some integer n ≥ 3. The order of this group is 2n. The ordinary quaternion group corresponds to the case n = 3. The generalized quaternion group can be realized as the subgroup of unit quaternions generated by

<math>x = e^{2\pi i/2^{n-1}}<math>
<math>y = j\,<math>

The generalized quaternion groups are members of the still larger family of dicyclic groups.

See also

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools