E8 (mathematics)

In mathematics, E8 is the name of a Lie group and also its Lie algebra <math>\mathfrak{e}_8<math>. It is the largest of the five exceptional simple Lie groups. It is also one of the simply laced groups. E8 has rank 8 and dimension 248. Its center is the trivial subgroup. Its outer automorphism group is the trivial group. Its fundamental representation is the 248-dimensional adjoint.

The Dynkin diagram of the E8 algebra is

Missing image
Dynkin_diagram_E8.png
Dynkin diagram of E_8

One can construct the <math>E_8<math> group as the automorphism group of the <math>E_8<math> Lie algebra. This algebra has a 120-dimensional subalgebra <math>so(16)<math> generated by <math>J_{ij}<math> as well as 128 new generators <math>Q_a<math> that transform as a Weyl-Majorana spinor of <math>spin(16)<math>. These statements determine the commutators

<math>[J_{ij},J_{kl}]=\delta_{jk}J_{il}-\delta_{jl}J_{ik}-\delta_{ik}J_{jl}+\delta_{il}J_{jk}<math>

as well as

<math>[J_{ij},Q_a] = \frac 14 (\gamma_i\gamma_j-\gamma_j\gamma_i)_{ab} Q_b<math>,

while the remaining commutator (not anticommutator!) is defined as

<math>[Q_a,Q_b]=\gamma^{[i}_{ac}\gamma^{j]}_{cb} J_{ij}.<math>

It is then possible to check that the Jacobi identity is satisfied.

This group frequently appears in string theory and supergravity, for example as the U-duality group of supergravity on an eight-torus (a noncompact version), or as a part of the gauge group of the heterotic string (the compact version).

Root system

All <math>\begin{pmatrix}8\\2\end{pmatrix}<math> permutations of

<math>(\pm 1,\pm 1,0,0,0,0,0,0)<math>

and all of the following vectors

<math>(\pm{1\over 2},\pm{1\over 2},\pm{1\over 2},\pm{1\over 2},\pm{1\over 2},\pm{1\over 2},\pm{1\over 2},\pm{1\over 2})<math>

for which the sum of all the eight coordinates is even.

There are 240 roots in all.

Simple roots:

(0,0,0,0,0,0,1,-1)

(0,0,0,0,0,0,1,1)

(0,0,0,0,0,1,-1,0)

(0,0,0,0,1,-1,0,0)

(0,0,0,1,-1,0,0,0)

(0,0,1,-1,0,0,0,0)

(0,1,-1,0,0,0,0,0)

(1/2,-1/2,-1/2,-1/2,-1/2,-1/2,-1/2,1/2)

Cartan matrix

<math>

\begin{pmatrix}

2 & -1 &  0 &  0 &  0 &  0 &  0 & 0 \\

-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\

0 & -1 &  2 & -1 &  0 &  0 &  0 & -1 \\
0 &  0 & -1 &  2 & -1 &  0 &  0 & 0 \\
0 &  0 &  0 & -1 &  2 & -1 &  0 & 0 \\
0 &  0 &  0 &  0 & -1 &  2 & -1 & 0 \\
0 &  0 &  0 &  0 &  0 & -1 &  2 & 0 \\
0 &  0 & -1 &  0 &  0 &  0 &  0 & 2

\end{pmatrix}<math>

Exceptional Lie groups

E6 | E7 | E8 | F4 | G2
Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools