User:Paul August/Sandbox


<tr><td>  <td align=left bgcolor="#00ffbb">≈ 0.62946 50204 <td>Cahen's constant[5] (http://www.tcaep.co.uk/science/constant/ctod.htm) <td>  <td align=center>  <td>  <td align=right>  <tr><td>  <td align=left bgcolor="#00ffbb">≈ 0.66274 34193 <td>Laplace limit[6] (http://mathworld.wolfram.com/LaplaceLimit.html) <td>  <td align=center>  <td>  <td align=right>  <tr><td>  <td align=left bgcolor="#00ffbb">≈ 0.80939 40205 <td>Alladi-Grinstead constant[7] (http://mathworld.wolfram.com/Alladi-GrinsteadConstant.html) <td>NuT <td align=center>  <td>  <td align=right>  <tr><td>Λ <td align=left bgcolor="#00ffbb">≈ 1.09868 58055 <td>Lengyel's constant[8] (http://mathworld.wolfram.com/LengyelsConstant.html) <td>Com <td align=center>  <td>1992 <td align=right>  <tr><td>  <td align=left bgcolor="#00ffbb">≈ 1.18656 91104 <td>Khinchin-Lévy constant[9] (http://mathworld.wolfram.com/Khinchin-LevyConstant.html) <td>NuT <td align=center>  <td>  <td align=right>  <tr><td>  <td align=left bgcolor="#00ffbb">≈ 1.20205 69031 59594 28539 97381 <td>Apéry's constant[10] (http://mathworld.wolfram.com/AperysConstant.html) <td>  <td align=center>  <td>1979 <td align="right"> 1,000,000,000 <tr><td>θ <td align=left bgcolor="#00ffbb">≈ 1.30637 78838 63080 69046 <td>Mills' constant[11] (http://mathworld.wolfram.com/MillsConstant.html) <td>NuT <td align=center>? <td>1947 <td align=right>  <tr><td>  <td align=left bgcolor="#00ffbb">≈ 1.45607 49485 82689 67139 95953 51116 54356 <td>Backhouse's constant[12] (http://mathworld.wolfram.com/BackhousesConstant.html) <td>  <td align=center>  <td>  <td align=right>  <tr><td>  <td align=left bgcolor="#00ffbb">≈ 1.46707 80794 <td>Porter's constant[13] (http://mathworld.wolfram.com/PortersConstant.html) <td>NuT <td align=center>  <td>1975 <td align=right>  <tr><td>  <td align=left bgcolor="#00ffbb">≈ 1.53960 07178 <td>Lieb's square ice constant[14] (http://www.mathsoft.com/mathresources/constants/discretestructures/article/0,,2265,00.html) <td>Com <td align=center>  <td>1967 <td align=right>  <tr><td>  <td align=left bgcolor="#00ffbb">≈ 1.70521 11401 05367 <td>Niven's constant[15] (http://mathworld.wolfram.com/NivensConstant.html) <td>NuT <td align=center>  <td>1969 <td align=right>  <tr><td>  <td align=left bgcolor="#00ffbb">≈ 2.58498 17596 <td>Sierpinski's constant[16] (http://www.tcaep.co.uk/science/constant/detail/sierpinskisconstant.htm) <td>  <td align=center>  <td>  <td align=right>  <tr><td>  <td align=left bgcolor="#00ffbb">≈ 2.68545 2001 <td>Khinchin's constant[17] (http://mathworld.wolfram.com/KhinchinsConstant.html) <td>NuT <td align=center>? <td>1934 <td align=right>7350 <tr><td>F <td align=left bgcolor="#00ffbb">≈ 2.80777 02420 <td>Fransén-Robinson constant[18] (http://mathworld.wolfram.com/Fransen-RobinsonConstant.html) <td>Ana <td align=center>  <td>  <td align=right>  <tr><td>L <td align=left bgcolor="#00ffbb">≈ .5 <td>Landau's constant <td>Ana <td align=center>  <td>  <td align=right>1 </table>
Symbol Approximate Value Name Field N First Described # of Known Digits
π
≈ 3.14159 26535 89793 23846 26433 83279 50288 Pi, Archimedes' constant or Ludoph's number Gen, Ana T 1,241,100,000,000
e
≈ 2.71828 18284 59045 23536 02874 71352 66249 Napier's constant, base of Natural logarithm Gen, Ana T 50,100,000,000
√2
≈ 1.41421 35623 73095 04880 16887 24209 69807 Pythagoras' constant, square root of two Gen I
A
137,438,953,444
√3
≈ 1.73205 08075 68877 29352 74463 41505 Theodorus' constant, square root of three Gen I
A
γ
≈ 0.57721 56649 01532 86060 65120 90082 40243 Euler-Mascheroni constant Gen, NuT  ? 108,000,000
φ
≈ 1.61803 39887 49894 84820 45868 34365 63811 Golden mean Gen A 3,141,000,000
β*
≈ 0.70258 Embree-Trefethen constant NuT
δ
≈ 4.66920 16091 02990 67185 32038 20466 20161 Feigenbaum constant ChT
α
≈ 2.50290 78750 95892 82228 39028 73218 21578 Feigenbaum constant ChT
C2
≈ 0.66016 18158 46869 57392 78121 10014 55577 Twin prime constant NuT 5,020
M1
≈ 0.26149 72128 47642 78375 54268 38608 69585 Meissel-Mertens constant NuT 1866
1874
8,010


B2
≈ 1.90216 05823 Brun's constant for twin prime NuT 1919 10
B4
≈ 0.87058 83800 Brun's constant for prime quadruplets NuT
Λ
> – 2.7 · 10-9 de Bruijn-Newman constant NuT 1950?
K
≈ 0.91596 55941 77219 01505 46035 14932 38411 Catalan's constant Com 201,000,000
K
≈ 0.76422 36535 89220 66 Landau-Ramanujan constant NuT I (?) 30,010
K
≈ 1.13198 824 Viswanath's constant NuT 8
L
≈ 1.08366 Legendre's constant NuT
μ
≈ 1.45136 92348 83381 05028 39684 85892 027 Ramanujan-Soldner constant NuT 75,500
EB
≈ 1.60669 51524 15291 763 Erdös-Borwein constant NuT I
Ω
 ? Chaitin's constant Inf T
β
≈ 0.28016 94990 Bernstein's constant[1] (http://mathworld.wolfram.com/BernsteinsConstant.html) Ana
λ
≈ 0.30366 30029 Gauss-Kuzmin-Wirsing constant[2] (http://mathworld.wolfram.com/Gauss-Kuzmin-WirsingConstant.html) Com 1974 385
D(1)
≈ 0.35323 63719 Hafner-Sarnak-McCurley constant[3] (http://mathworld.wolfram.com/Hafner-Sarnak-McCurleyConstant.html) NuT 1993
μ
≈ 0.62432 99885 Golomb-Dickman constant[4] (http://mathworld.wolfram.com/Golomb-DickmanConstant.html) Com NuT align=right 1930
1964


Template:Country geography

NotedTemplate:Rf HorsesTemplate:Rf TinaTemplate:Rf




Contents: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


Distance formulas

The Euclidean distance for two points in the Euclidean plane (also called Euclidean 2-space), <math> P = (x_1, y_1) <math> and <math> Q = (x_2, y_2), <math> is given by the following formula:

<math>\sqrt{(x_1-y_1)^2 + (x_2-y_2)^2} <math>


This can be seen to be an application the Pythagorean theorem, since the distance between P and Q be represented as the diagonal of a right triangle whose third verticy is the point <math> R = (x_2, y_1). <math>


1-norm distance = <math>\sum \left| x_i - y_i \right|<math>
2-norm distance = <math>\left( \sum \left| x_i - y_i \right|^2 \right)^\frac{1}{2}<math>
p-norm distance = <math>\left( \sum \left| x_i - y_i \right|^p \right)^\frac{1}{p}<math>
infinity norm distance = <math>\lim_{p \to \infty} \left( \sum \left| x_i - y_i \right|^p \right)^\frac{1}{p} = \max \left| x_i - y_i \right|.<math>



1-norm distance= <math>\sum \left| x_i - y_i \right|<math>
2-norm distance = <math>\left( \sum \left| x_i - y_i \right|^2 \right)^\frac{1}{2}<math>
p-norm distance = <math>\left( \sum \left| x_i - y_i \right|^p \right)^\frac{1}{p}<math>
infinity norm distance = limit of the p norm distance as p goes to infinity

<math>\lim_{p \to \infty} \left( \sum \left| x_i - y_i \right|^p \right)^\frac{1}{p}<math>

= max <math>\left| x_i - y_i \right|.<math>



The truth table for the disjunction of <math>\lnot A \lor \lnot B<math> is:

<math>A<math> <math>B<math> <math>\lnot A<math> <math>\lnot B<math> <math> \lnot A \lor \lnot B <math>
F F T T T
F T T F T
T F F T T
T T F F F

Since the enumeration of all possible truth-values for <math>A<math> and <math>B<math> yields the same truth-value under both <math>\lnot (A \land B)<math> and <math>\lnot A \lor \lnot B<math>, the two are logically equivalent, and may be substituted for each other.



Global usage share from OneStat.com
Date IE Mozilla Safari Netscape Opera Source
04/29/02 97% 2.8% 0.5%   (http://www.onestat.com/html/aboutus_pressbox4.html)
07/21/02 95% 0.4% 3.4% 0.7%   (http://www.onestat.com/html/aboutus_pressbox7.html)
09/30/02 95% 0.8% 3.0% 0.9%   (http://www.onestat.com/html/aboutus_pressbox11.html)
12/16/02 95% 1.1% 3.0%   (http://www.onestat.com/html/aboutus_pressbox15.html)
02/03/03 95% 1.2% 0.11% 2.9%   (http://www.onestat.com/html/aboutus_pressbox18.html)
07/28/03 95% 1.6% 0.25% 2.5%   (http://www.onestat.com/html/aboutus_pressbox23.html)
01/19/04 95% 1.8 0.48 0.8%1   (http://www.onestat.com/html/aboutus_pressbox26.html)
05/28/04 94% 2.1% 0.71% 1.02%1   (http://www.onestat.com/html/aboutus_pressbox30.html)
11/22/04 89% 7.35% 0.91% 1.33%   (http://www.onestat.com/html/aboutus_pressbox34.html)
02/28/05 87% 8.45% 1.21% 1.11% 1.09%   (http://www.onestat.com/html/aboutus_pressbox36.html)
1 Usage for Opera 7.0 only.


USA usage share from: WebSideStory.com (http://www.websidestory.com/services-solutions/datainsights/spotlight.html)
Date IE Firefox Mozilla1
06/04/04 95.48% 3.53%
11/05/04 92.89% 3.03% 5.98%
12/03/04 91.80% 4.06% 6.89%
01/14/05 90.28% 4.95% 7.59%
02/18/05 89.85% 5.69% 8.16%
1All Netscape and Mozilla-based browsers, including Firefox.


August&dbname=enwiki (http://zwinger.wikimedia.org/~kate/cgi-bin/count_edits.cgi?user=Paul)

Paul August

<math>\|f\|_\infty := \inf \{ C\ge 0 : |f(x)| \le C \mbox{ for almost every } x\}.<math>
<math>\|f\|_\infty := \inf \{ a \ge b : |f(x)| \le C \mbox{ for almost every } x\}.<math>


<math>\Delta x \Delta p \ge \frac{h}{4\pi} <math>


<math> \{ a \ge b \} <math>



Anons are allowed to vote on VFD and elsewhere. There is no policy (that I know of) that says that anons can't vote or that their votes don't count. Admins can, however, discount anon votes if there is "strong evidence of bad faith". For the relevant policy see: Wikipedia:Deletion guidelines for administrators. Also, it is helpful to keep in mind that decisions are made in Wikipedia by "rough consensus". Voting takes place only to help determine whether such a consensus exists.


Paul August 17:13, Dec 15, 2004 (UTC

I'm on vacation!

In case anyone is trying to contact me, I will be unavailable until April 12th.


</center>


</div> </center>



<center> I'm on vacation! </center>


In case anyone is trying to contact me, I will be unavailable for two weeks. Paul August, Nov 20, 2004


<center>In case anyone is trying to contact me, I will be unavailable for two weeks. </center>


<center> I'm on vacation! </center>


<center>Paul August, Nov 20, 2004 </center>



[19] (http://en.wikipedia.org/w/wiki.phtml?title=Wikipedia:Featured+article+candidates&limit=20&offset=8000&action=history)


Attalid geneaology

                      Attalus = Boa  
                              |
     ------------------------------------------------------
     |               |                                    |
Philetaerus      Eumenes = Satyra                      Attalus
                         |                                |
          ---------------------                -----------------------
          |                   |                |                     |
      Eumenes I         Philetaerus (?)     Attalus = Antiochis   Eumenes (?)
                                                    |  
                                                Attalus I = Apollonis
                                                          |
               --------------------------------------------------
               |               |                |               |
            Eumenes II     Attalus II      Philetaerus      Athenaeus
               |
            Attalus III


How to do a note.1

15:37, Oct 21, 2004 (UTC)


[javascript:void((function () {userName="JesseW";days=3;q=document.getElementsByTagName("ul");for (n=0;n<days;n++) {r="";z=q[n].childNodes; for (x=0;x<z.length;x=x+2) {if ((z[x].childNodes[7] && z[x].childNodes[7].innerHTML != userName) && (z[x].childNodes[9] && z[x].childNodes[9].innerHTML != userName)) {r=r+"<li>"+z[x].innerHTML+"</li>\n"}};q[n].innerHTML=r}})())]

[[User:Cohesion|cohesion ☎]]


Topics in Greek mythology
Gods:
Heroes:
Related:


Thanks for experimenting with Wikipedia. Your test worked, and has now been removed. Please use Wikipedia:Sandbox for any other tests you want to do, since testing in articles will be reverted quickly. Please see the welcome page if you would like to learn more about contributing to our encyclopedia. Thanks.

Template:Test1

Please stop adding nonsense to Wikipedia. It is considered vandalism. If you want to experiment, please use the sandbox. Thank you.

Please stop. If you continue to vandalize pages, you will be blocked from editing Wikipedia.


1-200 (http://en.wikipedia.org/w/wiki.phtml?title=Special:Contributions&limit=200&target=Paul_August)

Image:Phocaea_map.jpg rv to previous version, (see Talk:Naive set theory )

See Axiomatic set theory#Well-foundedness and hypersets


to browse: http://en.wikipedia.org/w/wiki.phtml?title=Special:Allpages&from=The

<math>\frac{2}{4} or {2 \over 4}<math>


A ∪ A = (A ∪ A) ∩ U    by the identity laws
&nbsp = (A ∪ A) ∩ (A ∪ A′)   by the complement laws
&nbsp = A ∪ (A ∩ A′)   by the distributive laws
&nbsp = A ∪ ∅   by the complement laws
&nbsp = A   by the identity laws

Pausanias says that Phocaea was founded by Phocians under Athenian leadership, on land given to them by the Aeolian Cymaeans, and that they were admitted into the Ionian confederacy (see Panionion) after accepting as kings the line of Codrus. (Pausanias, Description of Greece, 7.3.10 [20] (http://www.perseus.tufts.edu/cgi-bin/ptext?lookup=Paus.+7.3.1)). Pottery remains indicate Aeolian presence as late as the 9th century BC, and Ionian presence as early as the end of the 9th century BC. From this an approximate date of settlement for Phocaea can be inferred (see: [21] (http://www.perseus.tufts.edu/cgi-bin/ptext?doc=Perseus%3Atext%3A1999.04.0006%3Aid%3Dphokaia)).

References

  • August, P, et al., Wikipedia, The Free Encyclopedia, Wikimedia Foundation (2005)
  • Knott, T , et al., Wikipedia, The Free Encyclopedia: "User:Theresa knott'", Wikimedia Foundation (2005)

Notes

Template:Ent And now it is. Template:Ent However some scholars disagree, believing that such explanations are full of "horse shit aroma", see Knott, p 1 (http://en.wikipedia.org/w/index.php?title=User:Theresa_knott&diff=0) Template:Ent This question has of course plagued philosophers and theologians for ages, some speculate that this referes to a cultural icon from the late 20th century.

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools