Talk:Elliptic function

Contents

Lattice

We need an article on fundamental pair of periods that reviews all of the properties of a 2D lattice so that this article and the modular forms article (and the Jacobi & Wierestrass elliptic articles) can reference it. linas 05:10, 13 Feb 2005 (UTC)

See my comment at modular form. Charles Matthews 08:17, 13 Feb 2005 (UTC)

Vandalism

The page has been vandalised.

Charles Matthews 06:03, 9 Sep 2003 (EDT)

Weierstrass

I moved the following from the subject page:

An elliptic function on the complex numbers is a function of the form
E(z; a,b) = ∑mn (z - m'a -n'b)-2
where a and b are complex parameters and m and n range over the integers. As written, this series is improper and divergent; but it can be made convergent by taking the Cauchy principal value, which is the limit as x->∞ of the sum of those terms with |z - m'a - n'b| < x.
The function is periodic with two periods, a and b. Plotting E(z) on x versus E'(z) on y results in an elliptic curve.
A real elliptic function can also be defined in the same way. Either a is real and b imaginary (in which case the elliptic curve has two parts, E(z + b/2) being also real for real z) or a + b is real and a - b is imaginary (in which case the elliptic curve has one part).
Degenerate elliptic functions and curves are obtained by setting a or b to infinity. If a or b is infinite, but not both, the Cauchy principal value diverges and other means must be used to define the function. If both are infinite, E(z) is simply 1/z2. If a is real and b is infinite, the curve consists of one smooth part and one point. If a is imaginary and b is infinite, the curve is a loop that crosses itself. If both are infinite, the curve is the semicubical parabola x3 = y2/64.

The formula for E is wrong I believe, and there are certainly other elliptic functions. I don't know how to rescue this. AxelBoldt 01:48 Nov 8, 2002 (UTC)

I just picked up the yellow book. The correct formula is

E(z; a,b) = z-2 + ∑mn (z - m'a -n'b)-2-(n'b)-2,

where n=m=0 is excluded from the sum. I think it should be put at Weierstrass's elliptic function. -phma

References

The elliptic functions as they should be in the references is eccentric. Better for example to go to Whittaker & Watson, though their notation is not what the modern standard is (same for all the older books). Tannery and Molk is the classic reference; book by Weber. But the old books are out of print, I suppose - more's the pity. Charles Matthews 22:14, 19 Nov 2004 (UTC)

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools