Cauchy principal value

In mathematics, the Cauchy principal value of certain improper integrals is defined as either

  • the finite number
<math>\lim_{\varepsilon\rightarrow 0+} \left(\int_a^{b-\varepsilon} f(x)\,dx+\int_{b+\varepsilon}^c f(x)\,dx\right)<math>
where b is a point at which the behavior of the function f is such that
<math>\int_a^b f(x)\,dx=\pm\infty<math>
for any a < b and
<math>\int_b^c f(x)\,dx=\mp\infty<math>
for any c > b (one sign is "+" and the other is "−").

or

  • the finite number
<math>\lim_{a\rightarrow\infty}\int_{-a}^a f(x)\,dx<math>
where
<math>\int_{-\infty}^0 f(x)\,dx=\pm\infty<math>
and
<math>\int_0^\infty f(x)\,dx=\mp\infty<math>
(again, one sign is "+" and the other is "−").

In some cases it is necessary to deal simultaneously with singularities both at a finite number b and at infinity. This is usually done by a limit of the form

<math>\lim_{\varepsilon \rightarrow 0+}\int_{b-1/\varepsilon}^{b-\varepsilon} f(x)\,dx+\int_{b+\varepsilon}^{b+1/\varepsilon}f(x)\,dx.<math>

Nomenclature

The Cauchy principal value of a function <math>f<math> can take on several nomenclatures, varying for different authors. These include (but are not limited to): <math>PV \int f(x)dx<math>, <math>P<math>, P.V., <math>\mathcal{P}<math>, <math>P_v<math>, <math>(CPV)<math> and V.P..

Examples

Consider the difference in values of two limits:

<math>\lim_{a\rightarrow 0+}\left(\int_{-1}^{-a}\frac{dx}{x}+\int_a^1\frac{dx}{x}\right)=0,<math>
<math>\lim_{a\rightarrow 0+}\left(\int_{-1}^{-a}\frac{dx}{x}+\int_{2a}^1\frac{dx}{x}\right)=-\log_e 2.<math>

The former is the Cauchy principal value of the otherwise ill-defined expression

<math>\int_{-1}^1\frac{dx}{x}{\ }

\left(\mbox{which}\ \mbox{gives}\ -\infty+\infty\right).<math>

Similarly, we have

<math>\lim_{a\rightarrow\infty}\int_{-a}^a\frac{2x\,dx}{x^2+1}=0,<math>

but

<math>\lim_{a\rightarrow\infty}\int_{-2a}^a\frac{2x\,dx}{x^2+1}=-\log_e 4.<math>

The former is the principal value of the otherwise ill-defined expression

<math>\int_{-\infty}^\infty\frac{2x\,dx}{x^2+1}{\ }

\left(\mbox{which}\ \mbox{gives}\ -\infty+\infty\right).<math>

These pathologies do not afflict Lebesgue-integrable functions, that is, functions the integrals of whose absolute values are finite.

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools