Glossary of differential geometry and topology

This is a glossary of terms specific to differential geometry and differential topology. The following two glossaries are closely related:

See also:

Words in italics denote a self-reference to this glossary.

Contents: top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


A

Atlas

B

Bundle, see fiber bundle.

C

Chart

Cobordism

Codimension. The codimension of a submanifold is the dimension of the ambient space minus the dimension of the submanifold.

Connected sum

Connection

Cotangent bundle, the vector bundle of cotangent spaces on a manifold.

Cotangent space

D

Diffeomorphism. Given two differentiable manifolds M and N, a bijective map <math>f<math> from M to N is called a diffeomorphism if both <math>f:M\to N<math> and its inverse <math>f^{-1}:N\to M<math> are smooth functions.

Doubling, given a manifold M with boundary, doubling is taking two copies of M and identifying their boundaries. As the result we get a manifold without boundary.

E

Embedding

F

Fiber. In a fiber bundle, π: EB the preimage π−1(x) of a point x in the base B is called the fiber over x, often denoted Ex.

Fiber bundle

Frame

Frame bundle, the principal bundle of frames on a smooth manifold.

Flow

G

Genus

H

Hypersurface. A hypersurface is a submanifold of codimension one.

I

Immersion

L

Lens space. A lens space is a quotient of the 3-sphere (or (2n+1)-sphere) by a free isometric action of Zk.

M

Manifold. A topological manifold is a locally Eulidean Hausdorff space. (In Wikipedia, a manifold need not be paracompact or second-countable.) A Ck manifold is a differentiable manifold whose chart overlap functions are k times continuously differentiable. A C or smooth manifold is a differentiable manifold whose chart overlap functions are infinitely continuously differentiable.

P

Parallelizable. A smooth manifold is parallelizable if it admits a smooth global frame. This is equivalent to the tangent bundle being trivial.

Principal bundle. A principal bundle is a fiber bundle PB together with right action on P by a Lie group G that preserves the fibers of P and acts simply transitively on those fibers.

Pullback

S

Section

Submanifold. A submanifold is the image of a smooth embedding of a manifold.

Submersion

Surface, a two-dimensional manifold or submanifold.

T

Tangent bundle, the vector bundle of tangent spaces on a differentiable manifold.

Tangent field, a section of the tangent bundle. Also called a vector field.

Tangent space

Torus

Transversality. Two submanifolds M and N intersect transversally if at each point of intersection p their tangent spaces <math>T_p(M)<math> and <math>T_p(N)<math> generate the whole tangent space at p of the total manifold.

Trivialization

V

Vector bundle, a fiber bundle whose fibers are vector spaces and whose transition functions are linear maps.

Vector field, a section of a vector bundle. More specifically, a vector field can mean a section of the tangent bundle.

W

Whitney sum. A Whitney sum is an analog of the direct product for vector bundles. Given two vector bundles α and β over the same base B their cartesian product is a vector bundle over B ×B. The diagonal map <math>B\to B\times B<math> induces a vector bundle over B called the Whitney sum of these vector bundles and denoted by α⊕β.

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools