Gastrointestinal tract
|
The gastrointestinal or digestive tract, also referred to as the GI tract or the alimentary canal or the gut, is the system of organs within multicellular animals which takes in food, digests it to extract energy and nutrients, and expels the remaining waste.
The GI tract differs substantially from animal to animal. For instance, some animals have multi-chambered stomachs.
Contents |
Clip Art and Pictures
- Anatomy Clipart (https://classroomclipart.com/image/category/anatomy-clipart.htm)
- Anatomy Pictures and Illustrations (https://classroomclipart.com/image/category/anatomy-illustrations.htm)
Basic anatomy of the human alimentary canal
In a normal human adult male, the GI tract is approximately 7 and a half metres long (25 feet) and consists of the following components:
- Mouth (buccal cavity; includes salivary glands, mucosa, teeth and tongue)
- Pharynx
- Esophagus and cardia
- Stomach, which includes the antrum and pylorus
- Bowel or Intestine:
- small intestine, which has three parts:
- duodenum
- jejunum
- ileum, (not to be confused with the ilium, or hipbone). The ileum joins with the cecum at the ileocecal junction
- large intestine, which has three parts:
- small intestine, which has three parts:
The liver secretes bile into the small intestine via the gallbladder and biliary system. The pancreas secretes an isosmotic fluid containing bicarbonate and several enzymes, including trypsin, chymotrypsin, lipase, and pancreatic amylase, as well as nucleolytic enzymes, into the small intestine. Both these secretory organs aid in digestion.
The process of digestion and excretion
See also full article at digestion.
Food, after being mostly mechanically broken down in the mouth by the teeth and tongue, and slightly chemically broken down by the saliva, passes through the esophagus to the stomach, where the process of breakdown continues, mostly mechanical, as relatively large parts of food (now called "bolus") are minimized into smaller portions, and slight amounts of chemical processing takes place, especially on protein, by the enzymes present in the stomach. It then passes to the small intestine where further breakdown occurs, and the useful particles are absorbed into the bloodstream. The remaining particles pass through the large intestine and are ultimately expelled as feces.
See also body, anatomy, List of human anatomical features, abdominal cavity
Your digestive system and how it works
The digestive system is a series of hollow organs joined in a long, twisting tube from the mouth to the anus (see figure). Inside this tube is a lining called the mucosa. In the mouth, stomach, and small intestine, the mucosa contains tiny glands that produce juices to help digest food.
Two solid organs, the liver and the pancreas, produce digestive juices that reach the intestine through small tubes. In addition, parts of other organ systems (for instance, nerves and blood) play a major role in the digestive system.
Importance of digestion
When we eat such things as bread, meat, and vegetables, they are not in a form that the body can use as nourishment. Our food and drink must be changed into smaller molecules of nutrients before they can be absorbed into the blood and carried to cells throughout the body. Digestion is the process by which food and drink are broken down into their smallest parts so that the body can use them to build and nourish cells and to provide energy.
How food is digested
Digestion involves the mixing of food, its movement through the digestive tract, and chemical breakdown of the large molecules of food into smaller molecules. Digestion begins in the mouth, when we chew and swallow, and is completed in the small intestine. The chemical process varies somewhat for different kinds of food. Bacteria which naturally live in the gastrointestinal tract do a lot of the actual chemical work of digesting for us.
Movement of food through the system
The large, hollow organs of the digestive system contain muscle that enables their walls to move. The movement of organ walls can propel food and liquid and also can mix the contents within each organ. Typical movement of the esophagus, stomach, and intestine is called peristalsis. The action of peristalsis looks like an ocean wave moving through the muscle. The muscle of the organ produces a narrowing and then propels the narrowed portion slowly down the length of the organ. These waves of narrowing push the food and fluid in front of them through each hollow organ.
The first major muscle movement occurs when food or liquid is swallowed. Although we are able to start swallowing by choice, once the swallow begins, it becomes involuntary and proceeds under the control of the nerves.
The esophagus is the organ into which the swallowed food, in the form of a bolus, is pushed. It connects the throat above with the stomach below. At the junction of the esophagus and stomach, there is a ringlike valve closing the passage between the two organs. However, as the food approaches the closed ring, the surrounding muscles relax and allow the food to pass.
The food then enters the stomach, which has three mechanical tasks to do. First, the stomach must store the swallowed food and liquid. This requires the muscle of the upper part of the stomach to relax and accept large volumes of swallowed material. The second job is to mix up the food, liquid, and digestive juice produced by the stomach. The lower part of the stomach mixes these materials by its muscle action. The third task of the stomach is to empty its contents slowly into the small intestine.
Several factors affect emptying of the stomach, including the nature of the food (mainly its fat and protein content) and the degree of muscle action of the emptying stomach and the next organ to receive the contents (the small intestine). As the food is digested in the small intestine and dissolved into the juices from the pancreas, liver, and intestine, the contents of the intestine are mixed and pushed forward to allow further digestion.
Finally, all of the digested nutrients are absorbed through the intestinal walls. The waste products of this process include undigested parts of the food, known as fiber, and older cells that have been shed from the mucosa. These materials are propelled into the colon, where they remain, usually for a day or two, until the feces are expelled by a bowel movement.
Production of digestive juices
The glands that act first are in the mouth--the salivary glands. Saliva produced by these glands contains an enzyme that begins to digest the starch from food into smaller molecules.
The next set of digestive glands is in the stomach lining. They produce stomach acid and an enzyme that digests protein. One of the unsolved puzzles of the digestive system is why the acid juice of the stomach does not dissolve the tissue of the stomach itself. In most people, the stomach mucosa is able to resist the juice, although food and other tissues of the body cannot.
After the stomach empties the food and juice mixture into the small intestine, the juices of two other digestive organs mix with the food to continue the process of digestion. One of these organs is the pancreas. It produces a juice that contains a wide array of enzymes to break down the carbohydrate, fat, and protein in food. Other enzymes that are active in the process come from glands in the wall of the intestine or even a part of that wall.
The liver produces yet another digestive juice--bile. The bile is stored between meals in the gallbladder. At mealtime, it is squeezed out of the gallbladder into the bile ducts to reach the intestine and mix with the fat in food. The bile acids dissolve the fat into the watery contents of the intestine, much like detergents that dissolve grease from a frying pan. After the fat is dissolved, it is digested by enzymes from the pancreas and the lining of the intestine.
Absorption and transport of nutrients
Digested molecules of food, as well as water and minerals from the diet, are absorbed from the cavity of the upper small intestine. Most absorbed materials cross the mucosa into the blood and are carried off in the bloodstream to other parts of the body for storage or further chemical change. As already noted, this part of the process varies with different types of nutrients.
Carbohydrates
Based on a 2,000-calorie diet, it is recommended that 55 to 60 percent of total daily calories be from carbohydrates. Some of our most common foods contain most of their energy as carbohydrates. Examples are bread, potatoes, legumes, rice, corn, noodles, fruits, and vegetables. Many of these foods contain both starch and fiber.
The digestible carbohydrates are broken into simpler molecules by enzymes in the saliva, in juice produced by the pancreas, and in the lining of the small intestine. Starch is digested in two steps: First, an enzyme (amylase) in the saliva and pancreatic juice breaks the starch into molecules called maltose; then an enzyme in the lining of the small intestine (maltase) splits the maltose into glucose molecules that can be absorbed into the blood. Glucose is carried through the bloodstream to the liver, where it is stored or used to provide energy for the work of the body.
Table sugar is another carbohydrate that must be digested to be useful. An enzyme in the lining of the small intestine digests table sugar into glucose and fructose, each of which can be absorbed from the intestinal cavity into the blood. Milk contains yet another type of sugar, lactose, which is changed into absorbable molecules by an enzyme called lactase, also found in the intestinal lining.
Protein
Foods such as meat, eggs, and beans consist of giant molecules of protein that must be digested by enzymes before they can be used to build and repair body tissues. An enzyme in the juice of the stomach starts the digestion of swallowed protein. Further digestion of the protein is completed in the small intestine. Here, several enzymes from the pancreatic juice and the lining of the intestine carry out the breakdown of huge protein molecules into small molecules called amino acids. These small molecules can be absorbed from the hollow of the small intestine into the blood and then be carried to all parts of the body to build the walls and other parts of cells.
Fats
Fat molecules are a rich source of energy for the body. The first step in digestion of a fat such as butter is to dissolve it into the watery content of the intestinal cavity. The bile acids produced by the liver act as natural detergents to dissolve fat in water and allow the enzymes to break the large fat molecules into smaller molecules, some of which are fatty acids and cholesterol. The bile acids combine with the fatty acids and cholesterol and help these molecules to move into the cells of the mucosa. In these cells the small molecules are formed back into large molecules, most of which pass into vessels (called lymphatics) near the intestine. These small vessels carry the reformed fat to the veins of the chest, and the blood carries the fat to storage depots in different parts of the body.
Vitamins
Another vital part of our food that is absorbed from the small intestine is the class of chemicals called vitamins. The two different types of vitamins are classified by the fluid in which they can be dissolved: water-soluble vitamins (all the B vitamins and vitamin C) and fat-soluble vitamins (vitamins A, D, and K).
Water and salt
Most of the material absorbed from the cavity of the small intestine is water in which salt is dissolved. The salt and water come from the food and liquid we swallow and the juices secreted by the many digestive glands.
Control of the digestive process
Hormone regulators
A fascinating feature of the digestive system is that it contains its own regulators. The major hormones that control the functions of the digestive system are produced and released by cells in the mucosa of the stomach and small intestine. These hormones are released into the blood of the digestive tract, travel back to the heart and through the arteries, and return to the digestive system, where they stimulate digestive juices and cause organ movement. The hormones that control digestion are gastrin, secretin, and cholecystokinin (CCK):
- Gastrin causes the stomach to produce an acid for dissolving and digesting some foods. It is also necessary for the normal growth of the lining of the stomach, small intestine, and colon.
- Secretin causes the pancreas to send out a digestive juice that is rich in bicarbonate. It stimulates the stomach to produce pepsin, an enzyme that digests protein, and it also stimulates the liver to produce bile.
- CCK causes the pancreas to grow and to produce the enzymes of pancreatic juice, and it causes the gallbladder to empty.
Nerve regulators
Two types of nerves help to control the action of the digestive system. Extrinsic (outside) nerves come to the digestive organs from the unconscious part of the brain or from the spinal cord. They release a chemical called acetylcholine and another called adrenaline. Acetylcholine causes the muscle of the digestive organs to squeeze with more force and increase the "push" of food and juice through the digestive tract. Acetylcholine also causes the stomach and pancreas to produce more digestive juice. Adrenaline relaxes the muscle of the stomach and intestine and decreases the flow of blood to these organs.
Even more important, though, are the intrinsic (inside) nerves, which make up a very dense network embedded in the walls of the esophagus, stomach, small intestine, and colon. The intrinsic nerves are triggered to act when the walls of the hollow organs are stretched by food. They release many different substances that speed up or delay the movement of food and the production of juices by the digestive organs.
Specialization of organs
Four organs are subject to specialization in the kingdom Animalia.
- The first organ is the tongue which is only present in the phylum Chordata.
- The second organ is the esophagus. It is instead called a crop. It is an enlargement of the esophagus used to store food and exists in pigeons, bees and worms.
- The third organ is the stomach. It is called gizzard in birds. It is a muscular stomach used to mechanically digest food instead of storing it.
- The fourth organ is the large intestine. It is called the cecum and is present in non-ruminant herbivores such as rabbits. It aids in plant digestion of cellulose.
Diseases of the digestive system
Crohn's Disease can occur along any part of the digestive system, from the mouth to the perianal area.
Other uses for the gut
- The use of animal gut strings by musicians can be traced back to the third dynasty of Egypt. In the recent past, strings were made out of lamb gut. With the advent of the modern era, musicians tend to use synthetic strings made of nylon, silk or steel, however some orchestral violinists still use gut strings. Contrary to belief, cats were never used as a source for gut strings
- Sheep gut was the original source for natural gut string used in racquets, such as for tennis. Today, synthetic strings are much more common, but the best strings are now made out of cow gut
- "Natural" sausage hulls are made of animal gut, especially pig and cow
- Animal gut was used to make the cord lines in grandfather clocks, but may be replaced by wire
Reference
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health.
Digestive system |
Mouth - Pharynx - Crop - Esophagus - Stomach - Pancreas - Gallbladder - Liver - Small intestine (duodenum, jejunum, ileum) - Colon - Cecum - Rectum - Anus |
Human organ systems |
Cardiovascular system - Digestive system - Endocrine system - Immune system - Integumentary system - Lymphatic system - Muscular system - Nervous system - Skeletal system - Reproductive system - Respiratory system - Urinary system |