Functional analysis

Functional analysis is that branch of mathematics and specifically of analysis which is concerned with the study of spaces of functions. It has its historical roots in the study of transformations such as the Fourier transform and in the study of differential and integral equations. The word 'functional' goes back to the calculus of variations, implying a function whose argument is a function. Its use in general has been attributed to Volterra.

Contents

Normed vector spaces

In the modern view, functional analysis is seen as the study of complete normed vector spaces over the real or complex numbers. Such spaces are called Banach spaces. An important example is a Hilbert space, where the norm arises from an inner product. These spaces are of fundamental importance in the mathematical formulation of quantum mechanics. More generally, functional analysis includes the study of Fréchet spaces and other topological vector spaces not endowed with a norm.

An important object of study in functional analysis are the continuous linear operators defined on Banach and Hilbert spaces. These lead naturally to the definition of C*-algebras and other operator algebras.

Hilbert spaces

Hilbert spaces can be completely classified: there is a unique Hilbert space up to isomorphism for every cardinality of the base. Since finite-dimensional Hilbert spaces are fully understood in linear algebra, and since morphisms of Hilbert spaces can always be divided into morphisms of spaces with Aleph-null (ℵ0) dimensionality, functional analysis of Hilbert spaces mostly deals with the unique Hilbert space of dimensionality Aleph-null, and its morphisms. One of the open problems in functional analysis is to prove that every operator on a Hilbert space has a proper subspace which is invariant. Many special cases have already been proven.

Banach spaces

General Banach spaces are more complicated. There is no clear definition of what would constitute a base, for example.

For any real number p ≥ 1, an example of a Banach space is given by "all Lebesgue-measurable functions whose absolute value's p-th power has finite integral" (see Lp spaces).

In Banach spaces, a large part of the study involves the dual space: the space of all continuous linear functionals. As in linear algebra, the dual of the dual is not always isomorphic to the original space, but there is always a natural monomorphism from a space into its dual's dual. This is explained in the dual space article.

The notion of derivative is extended to arbitrary functions between Banach spaces; it turns out that the derivative of a function at a certain point is really a continuous linear map.

Major and foundational results

These are important results of functional analysis:

See also: list of functional analysis topics.

Status in mathematical logic

Most spaces considered in functional analysis have infinite dimension. To show the existence of a vector space basis for such spaces may require Zorn's lemma. Many very important theorems require the Hahn-Banach theorem which itself requires Zorn's lemma in case of a general infinite-dimensional space.

Points of view

Functional analysis as it currently stands includes a number of directions:

Literature

  • Dunford and Schwartz: Linear Operators (3 books), includes visualization charts

Topics in mathematics related to structure

Edit (http://en.wikipedia.org/w/wiki.phtml?title=Template:Structure&action=edit)
Abstract algebra | Universal algebra | Graph theory | Category theory | Order theory | Model theory | Structural proof theory
Geometry | Topology | General topology | Algebraic geometry | Algebraic topology | Differential geometry and topology
Analysis | Measure theory | Functional analysis | Harmonic analysis

Topics in mathematics related to space

Edit (http://en.wikipedia.org/w/wiki.phtml?title=Template:Space&action=edit)
Geometry | Trigonometry | Non-Euclidean geometry | Fractal geometry | Algebraic geometry
Topology | Metric geometry | Algebraic topology | Differential geometry and topology
Linear algebra | Functional analysis
de:Funktionalanalysis

es:Análisis funcional fr:Analyse fonctionnelle he:אנליזה פונקציונלית nl:Functionaalanalyse pl:Analiza funkcjonalna ru:Функциональный анализ ja:関数解析学 zh:泛函分析

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools