Chain complex

In mathematics, in the field of homological algebra, a chain complex <math>(A_\bullet, d_\bullet)<math> is a sequence of abelian groups or modules A0, A1, A2... connected by homomorphisms dn : AnAn-1, such that the composition of any two consecutive maps is zero: dn o dn+1 = 0 for all n. They tend to be written out like so:

<math>\ldots \to

A_{n+1} \begin{matrix} d_{n+1} \\ \to \\ \, \end{matrix} A_n \begin{matrix} d_n \\ \to \\ \, \end{matrix} A_{n-1} \begin{matrix} d_{n-1} \\ \to \\ \, \end{matrix} A_{n-2} \to \ldots \to A_2 \begin{matrix} d_2 \\ \to \\ \, \end{matrix} A_1 \begin{matrix} d_1 \\ \to \\ \, \end{matrix} A_0 \begin{matrix} d_0 \\ \to \\ \, \end{matrix} 0.<math>

A variant on the concept of chain complex is that of cochain complex. A cochain complex <math>(A^\bullet, d^\bullet)<math> is a sequence of abelian groups or modules A0, A1, A2... connected by homomorphisms dn : AnAn+1, such that the composition of any two consecutive maps is zero: dn+1 o dn = 0 for all n:

<math>0 \to

A_0 \begin{matrix} d_0 \\ \to \\ \, \end{matrix} A_1 \begin{matrix} d_1 \\ \to \\ \, \end{matrix} A_2 \to \ldots \to A_{n-1} \begin{matrix} d_{n-1} \\ \to \\ \, \end{matrix} A_n \begin{matrix} d_n \\ \to \\ \, \end{matrix} A_{n+1} \to \ldots.<math>

The idea is basically the same.

Applications of chain complexes usually define and apply their homology groups (cohomology groups for cochain complexes); in more abstract settings various equivalence relations are applied to complexes (for example starting with the chain homotopy idea). Chain complexes are easily defined in abelian categories.

A bounded complex is one in which almost all the Ai are 0 — so a finite complex extended to the left and right by 0's. An example is the complex defining the homology theory of a (finite) simplicial complex.

Examples

Singular homology

Suppose we are given a topological space X.

Define Cn(X) for natural n to be the free abelian group formally generated by singular simplices in X, and define the boundary map

<math>\partial_n: C_n(X) \to C_{n-1}(X): \, (\sigma: [v_0,\ldots,v_n] \to X) \mapsto

(\partial_n \sigma = \sum_{i=0}^n (-1)^i \sigma|[v_0,\ldots, \hat v_i, \ldots, v_n]),<math>

where the hat denotes the omission of a vertex. That is, the boundary of a singular simplex is alternating sum of restrictions to its faces. It can be shown ∂² = 0, so <math>(C_\bullet, \partial_\bullet)<math> is a chain complex; the singular homology <math>H_\bullet(X)<math> is the homology of this complex; that is,

<math>H_n(X) = \ker \partial_n / \mbox{im } \partial_{n+1}<math>.

de Rham cohomology

The differential k-forms on any smooth manifold M form an abelian group (in fact an R-vector space) called Ωk(M) under addition. The exterior derivative d = d k maps Ωk(M) → Ωk+1(M), and d 2 = 0 follows essentially from symmetry of second derivatives, so the vector spaces of k-forms along with the exterior derivative are a cochain complex:

<math> \Omega^0(M) \to \Omega^1(M) \to \Omega^2(M) \to \Omega^3(M) \to \ldots.<math>

The homology of this complex is the de Rham cohomology

<math>H^k_{\mathrm{DR}}(M) = \ker d_{k+1} / \mbox{im } d_k<math>.
Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools