Exterior derivative

In mathematics, the exterior derivative operator of differential topology, extends the concept of the differential of a function to differential forms of higher degree. It is important in the theory of integration on manifolds, and is the differential used to define de Rham and Alexander-Spanier cohomology. Its current form was invented by Élie Cartan.



The exterior derivative of a differential form of degree k is a differential form of degree k + 1.

For a k-form ω = fI dxI over Rn, the definition is as follows:

<math>d{\omega} = \sum_{i=1}^n \frac{\partial f_I}{\partial x_i} dx_i \wedge dx_I.<math>

For general k-forms ΣI fI dxI (where the multi-index I runs over all ordered subsets of {1, ..., n} of cardinality k), we just extend linearly. Note that if <math>i = I<math> above then <math>dx_i \wedge dx_I = 0<math> (see wedge product).


Exterior differentiation satisfies three important properties:

<math>d(\omega \wedge \eta) = d\omega \wedge \eta+(-1)^{{\rm deg\,}\omega}(\omega \wedge d\eta)<math>
<math>d(d\omega)=0 \, \!<math>

It can be shown that exterior derivative is uniquely determined by these properties and its agreement with the differential on 0-forms (functions).

The kernel of d consists of the closed forms, and the image of the exact forms (cf. exact differentials).

Invariant formula

Given a k-form ω and arbitrary smooth vector fields V0,V1, …, Vk we have

<math>d\omega(V_0,V_1,...V_k)=\sum_i(-1)^i V_i\omega(V_0,...,\hat V_i,...,V_k)<math>

where <math>[V_i,V_j]<math> denotes Lie bracket and the hat denotes the ommission of that element: <math>\omega(V_0,...,\hat V_i,...,V_k)=\omega(V_0,..., V_{i-1},V_{i+1}...,V_k).<math>

In particular, for 1-forms we have:


More generally, the Lie derivative is defined via the Lie bracket:


and the Lie derivative of a general differential form is closely related to the exterior derivative. The differences are primarily notational; various identities between the two are provided in the article on Lie derivatives.

Connection with vector calculus

The following correspondence reveals about a dozen formulas from vector calculus as merely special cases of the above three rules of exterior differentiation.


For a 0-form, that is a smooth function f: RnR, we have

<math>df = \sum_{i=1}^n \frac{\partial f}{\partial x_i}\, dx_i.<math>


<math>df(V) = \langle \mbox{grad }f,V\rangle,<math>

where grad f denotes gradient of f and <•, •> is the scalar product.


For a 1-form <math>\omega=\sum_{i} f_i\,dx_i<math> on R3,

<math>d \omega=\sum_{i,j}\frac{\partial f_i}{\partial x_j} dx_j\wedge dx_i,<math>

which restricted to the three-dimensional case <math>\omega= u\,dx+v\,dy+w\,dz <math> is

<math>d \omega = \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx \wedge dy

+ \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right) dy \wedge dz + \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right) dz \wedge dx.<math>

Therefore, for vector field V=[u,v,w] we have <math>d \omega(U,W)=\langle\mbox{curl}\, V \times U,W\rangle <math> where curl V denotes the curl of V, × is the vector product, and <•, •> is the scalar product.

(what are U and W here? this assertion needs clarification - Gauge 23:37, 7 Apr 2005 (UTC))


For a 2-form <math> \omega = \sum_{i,j} h_{i,j}\,dx_i\,dx_j,<math>

<math>d \omega = \sum_{i,j,k} \frac{\partial h_{i,j}}{\partial x_k} dx_k \wedge dx_i \wedge dx_j.<math>

For three dimensions, with <math> \omega = p\,dy\wedge dz+q\,dz\wedge dx+r\,dx\wedge dy<math> we get

<math>d \omega = \left( \frac{\partial p}{\partial x} + \frac{\partial q}{\partial y} + \frac{\partial r}{\partial z} \right) dx \wedge dy \wedge dz = \mbox{div}V dx \wedge dy \wedge dz,<math>

where V is a vector field defined by <math> V = [p,q,r].<math>


For a 1-form <math>\sigma = u\, dx + v\, dy<math> on R2 we have

<math>d \sigma = \left(\frac{\partial{v}}{\partial{x}} - \frac{\partial{u}}{\partial{y}}\right) dx \wedge dy<math>

which is exactly the 2-form being integrated in Green's theorem.

See also

fr:Dérivée extérieure


  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)


  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Personal tools