Binomial theorem

From Academic Kids

For other topics using the name "binomial", see binomial (disambiguation).

In mathematics, the binomial theorem is an important formula giving the expansion of powers of sums. Its simplest version reads

<math>(x+y)^n=\sum_{k=0}^n{n \choose k}x^ky^{n-k}\quad\quad\quad(1)<math>

whenever n is any non-negative integer and the numbers

<math>{n \choose k}=\frac{n!}{k!(n-k)!}<math>

are the binomial coefficients. This formula, and the triangular arrangement of the binomial coefficients, are often attributed to Blaise Pascal who described them in the 17th century. It was, however, known to Chinese mathematician Yang Hui in the 13th century.

For example, here are the cases n = 2, n = 3 and n = 4:

<math>(x + y)^2 = x^2 + 2xy + y^2\,<math>
<math>(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3\,<math>
<math>(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4.\,<math>

Formula (1) is valid for all real or complex numbers x and y, and more generally for any elements x and y of a semiring as long as xy = yx.

Newton's generalized binomial theorem

Isaac Newton generalized the formula to other exponents by considering an infinite series:

<math>{(x+y)^r=\sum_{k=0}^\infty {r \choose k} x^k y^{r-k}\quad\quad\quad(2)}<math>

where r can be any complex number (in particular r can be any real number, not necessarily positive and not necessarily an integer), and the coefficients are given by

<math>{r \choose k}={1 \over k!}\prod_{n=0}^{k-1}(r-n)=\frac{r(r-1)(r-2)\cdots(r-k+1)}{k!}<math>

(which in case k = 0 is a product of no numbers at all and therefore equal to 1, and in case k = 1 is equal to r, as the additional factors (r − 1), etc., do not appear in that case).

A particularly handy but non-obvious form holds for the reciprocal power:

<math>\frac{1}{(1-x)^r}=\sum_{k=0}^\infty {r+k-1 \choose r-1} x^k.<math>

For a more extensive account of Newton's generalized binomial theorem, see binomial series.

The sum in (2) converges and the equality is true whenever the real or complex numbers x and y are "close together" in the sense that the absolute valuex/y | is less than one.

The geometric series is a special case of (2) where we choose y = 1 and r = −1.

Formula (2) is also valid for elements x and y of a Banach algebra as long as xy = yx, y is invertible and ||x/y|| < 1.

"Binomial type"

The binomial theorem can be stated by saying that the polynomial sequence

<math>\left\{\,x^k:k=0,1,2,\dots\,\right\}\,<math>

is of binomial type.

See also

es:Teorema del binomio fr:Formule du binme de Newton he:הבינום של ניוטון ko:이항정리 nl:Binomium van Newton ja:二項定理 ru:Бином Ньютона sv:Binomialsatsen zh:二项式定理

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools