Vertex cover problem

In computer science, the vertex cover problem or node cover problem is an NP-complete problem in complexity theory, and was one of Karp's 21 NP-complete problems.

A vertex cover of an undirected graph <math>G = (V, E)<math> is a subset <math>V'<math> of the vertices of the graph which contains at least one of the two endpoints of each edge:

<math>V' \subseteq V: \forall \{a, b\} \in E : a \in V' \or b \in V'<math>.

In the graph at the right, {1,3,5,6} is an example of a vertex cover.

The vertex cover problem is the optimization problem of finding a vertex cover of minimum size in a graph. The problem can also be stated as a decision problem:

INSTANCE: A graph <math>G<math> and a positive integer <math>k<math>.
QUESTION: Is there a vertex cover of size <math>k<math> or less for <math>G<math>?

Vertex cover is NP-complete, which means it is unlikely that there is an efficient algorithm to solve it. NP-completeness can be proven by reduction from 3-satisfiability or, as Karp did, by reduction from the clique problem. As shown by Garey and Johnson in 1974, vertex cover remains NP-complete even in cubic graphs and even in planar graphs of degree at most 6.

Vertex cover is closely related to Independent Set problem by this theorem: a graph with <math>n<math> vertices has a vertex cover of size <math>k<math> if and only if the graph has an independent set of size <math>n-k<math>.

One can find a factor-2 approximation by repeatedly taking both endpoints of an edge into the vertex cover, removing them from the graph. No better constant-factor approximation is known; the problem is APX-complete, i.e., it cannot be approximated arbitrarily well.

A brute force algorithm to find a vertex cover in a graph is to choose some vertex and recursively branch into two cases: either take this vertex into the vertex cover, or all its neighbors. This algorithm is exponential in <math>k<math>, but not in the size of the graph, i.e., vertex cover is fixed-parameter tractable with respect to <math>k<math>.

See also

Further reading

  • Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, 1979.
  • Preeti Patil & Sangita Patil. (Lecturer in Vartak Polytechnic) A Guide to the Theory of NP-Completeness. BPB & Co., Mumbai, 2004.
  • M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete problems (http://portal.acm.org/citation.cfm?id=803884). Proceedings of the sixth annual ACM symposium on Theory of computing, p.47-63. 1974.de:Knotenüberdeckung

he:בעיית כיסוי הקודקודים

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools