Biodiversity
|
Biodiversity or biological diversity is the diversity of and in living nature. There are a number of definitions and measures of biodiversity.
Contents |
Etymology
The term biological diversity was coined by Thomas Lovejoy in 1980, while the word biodiversity itself was coined by the entomologist E.O. Wilson in 1986, in a report for the first American Forum on biological diversity organized by the National Research Council (NRC). The word biodiversity was suggested to him by the staff of NRC, to replace biological diversity, considered to be less effective in terms of communication.
Since 1986 the terms and the concept have achieved widespread use among biologists, environmentalists, political leaders, and concerned citizens worldwide. This use has coincided with the expansion of concern over extinction observed in the last decades of the 20th century.
Biodiversity definitions
Biodiversity is the variety of life: the different plants, animals and micro-organisms, their genes and the ecosystems of which they are a part.
Biological diversity has no single standard definition. One definition holds that biological diversity is a measure of the relative diversity among organisms present in different ecosystems. Diversity in this definition includes diversity within species and among species, and comparative diversity among ecosystems.
Another definition, simpler and clearer, but more challenging, is the totality of genes, species, and ecosystems of a region. An advantage of this definition is that it seems to describe most instances of its use, and one possibly unified view of the traditional three levels at which biodiversity has been identified:
- genetic diversity - diversity of genes within a species. There is a genetic variability among the populations and the individuals of the same species
- species diversity - diversity among species
- ecosystem diversity - diversity at a higher level of organization, the ecosystem (richness in the different processes to which the genes ultimately contribute)
The lattermost definition, which conforms to the traditional five organisation layers in biology, provides additional justification for multilevel approaches.
The 1992 United Nations Earth Summit in Rio de Janeiro defined biodiversity as "the variability among living organisms from all sources, including, inter alia, terrestrial, marine, and other aquatic ecosystems, and the ecological complexes of which they are part: this includes diversity within species, between species and of ecosystems".
This is, in fact, the closest thing to a single legally accepted definition of biodiversity, since it is the definition adopted by the United Nations Convention on Biological Diversity. The parties to this convention include all the countries on Earth, with the exception of Andorra, Brunei Darussalam, the Holy See, Iraq, Somalia, Timor-Leste, and the United States of America.
If the gene is the fundamental unit of natural selection, thus of evolution, some, like E.O. Wilson, say that the real biodiversity is the genetic diversity. However, the species diversity is the easiest one to study.
For geneticists, biodiversity is the diversity of genes and organisms. They study processes such as mutations, gene exchanges, and genome dynamics that occur at the DNA level and generate evolution.
For biologists, biodiversity is the diversity of populations of organisms and species, but also the way these organisms function. Organisms appear and disappear; sites are colonized by organisms of the same species or by another. Some species develop social organisations to improve their reproduction goals or use neighbor species that live in communities. Depending on their environment, organisms do not invariably use the same strategies of reproduction.
For ecologists, biodiversity is also the diversity of durable interactions among species. It not only applies to species, but also to their immediate environment (biotope) and the ecoregions the organisms live in. In each ecosystem, living organisms are part of a whole; they interact with one another, but also with the air, water, and soil that surround them.
Origin of life and biodiversity evolution
Biodiversity found on Earth today is the result of 3.5 billion years of evolution. Until the emergence of humans, the Earth supported more biodiversity than in any other period in geological history. Since the advent of humans, however, biodiversity has begun a rapid decline, with one species after another suffering extinction.
Estimates of global species diversity vary from 2 million to 100 million species, with a best estimate of somewhere near 10 million.
New species are regularly discovered (on average about three new species of birds each year) and many, though discovered, are not yet classified (an estimate states that about 40% of freshwater fishes from South America are not classified yet). Most of the diversity is found in tropical forests.
Benefits of biodiversity
Biodiversity has contributed in many ways to the development of human culture, and, in turn, human communities have played a major role in shaping the diversity of nature at the genetic, species, and ecological levels.
There are three main reasons commonly cited in the literature for the benefits of biodiversity.
Ecological role of biodiversity
All species provide some kind of function to an ecosystem. They can capture and store energy, produce organic material, decompose organic material, help to cycle water and nutrients throughout the ecosystem, control erosion or pests, fix atmospheric gases, or help regulate climate.
Ecosystems also provide various supports of production (soil fertility, pollinators of plants, predators, decomposition of wastes...) and services such as purification of the air and water, stabilisation and moderation of the climate, decrease of flooding, drought, and other environmental disasters.
These functions are important for ecosystem function and human survival.
Research suggests that a more diverse ecosystem is better able to withstand environmental stress and consequently is more productive. The loss of a species is thus likely to decrease the ability of the system to maintain itself or to recover from damage or disturbance. Just like a species with high genetic diversity, an ecosystem with high biodiversity may have a greater chance of adapting to environmental change. In other words, the more species comprising an ecosystem, the more stable the ecosystem is likely to be. The mechanisms underlying these effects are complex and hotly contested. In recent years, however, it has become clear that there are real ecological effects of biodiversity.
GEM_corn.jpg
Economic role of biodiversity
For all humans, biodiversity is first a resource for daily life. One important part of biodiversity is 'crop diversity', which is also called agrobiodiversity.
Most people see biodiversity as a reservoir of resources to be drawn upon for the manufacture of food, pharmaceutical, and cosmetic products. This concept of biological resources management probably explains most fears of resources disappearance related to the erosion of the biodiversity. However, it is also the origin of new conflicts dealing with rules of division and appropriation of natural resources.
Some of the important economic commodities that biodiversity supplies to humankind are:
- food : crops, livestock, forestry, and fish; (see also local food)
- medication. Wild plant species have been used for medicinal purposes since before the beginning of recorded history. For example, quinine comes from the cinchona tree (used to treat malaria), digitalis from the foxglove plant (chronic heart trouble), and morphine from the poppy plant (pain relief). According to the National Cancer Institute, over 70 % of the promising anti-cancer drugs come from plants in the tropical rainforests. Animals may also play a role, in particular in research. It is estimated that of the 250,000 known plant species, only 5,000 have been researched for possible medical applications.
- industry : for example, fibers for clothing, wood for shelter and warmth. Biodiversity may be a source of energy (such as biomass). Other industrial products are oils, lubricants, perfumes, fragrances, dyes, paper, waxes, rubber, latexes, resins, poisons, and cork, which can all be derived from various plant species. Supplies from animal origin include wool, silk, fur, leather, lubricants, and waxes. Animals may also be used as a mode of transport.
- tourism and recreation : biodiversity is a source of economical wealth for many areas, such as many parks and forests, where wild nature and animals are a source of beauty and joy for many people. Ecotourism, in particular, is a growing outdoor recreational activity.
Ecologists and environmentalists were the first to insist on the economic aspect of biological diversity protection. Thus, Edward O. Wilson wrote in 1992 that : The biodiversity is the one of the bigger wealths of the planet, and nevertheless the less recognized as such..
Estimation of the value of biodiversity is a necessary precondition to any discussion on the distribution of biodiversity richnesses. This value can be divided into use value (direct such as tourism or indirect such as pollination) and non-use or intrinsic value.
If biological resources represent an ecological interest for the community, their economic value is also increasing. New products are developed because of biotechnologies, and new markets created. For society, biodiversity also is a field of activity and profit. It requires a proper management setup to determine how these resources are to be used.
The majority of species have yet to be evaluated for their current or future economic importance.
Scientific role of biodiversity
Biodiversity is important because each species can give scientists some clue as to how life evolved and will continue to evolve on Earth. In addition, biodiversity helps scientists understand how life functions and the role of each species in sustaining ecosystems.