Talk:Harmonic mean
|
stats comment
added the definition when frequency is not unary.
- I don't understand. Are you saying that you added such a definition? If so, there's really no need to mention it here; the article history (http://en.wikipedia.org/w/index.php?title=Harmonic_mean&action=history) will show that. Are you saying that such a definition needs to be added? Please explain what you mean. Ruakh 14:27, 15 Jun 2005 (UTC)
Electrical Resistance?
Is this true?: "in an electrical circuit you have two resistors connected in parallel, one with 40 ohms and the other with 60 ohms, then the average resistance is 48 ohms" 210.224.218.13 15:51, Nov 20, 2003 (UTC)
- The total resistance is given by the harmonic mean divided by the number of resistors, not just the harmonic mean. The resistance should then be around 24 ohms. 128.84.45.4 20:55, Jul 06, 2004 (UTC)
- Exactly. The average resistance is 48 ohms, while the equivalent resistance is 24 ohms. (I don't think "average resistance" is a term any physicist/electrician/electrical engineer would use, since it would have different meanings for resistors in parallel as for resistors in series, but that's how this article is using the term, and I think that's fine.) Ruakh 02:32, 8 Mar 2005 (UTC)
Negative Numbers?
What if the two numbers are negative? The harmonic mean of -1 and -2 is 2/(-1 + -(1/2)), which equals 2/(-1.5) or 2 * -(2/3) or -4/3, which is larger than the arithmetic mean, which is -1.5 (as compared to the geometric mean being -1.3......). However, the geometric mean would actually be the square root of 2... messed up for negative numbers, I suppose. ugen64 03:26, Dec 16, 2003 (UTC)
- The article explicitly restricts the notion of harmonic mean to the positive reals. If it didn't, then we'd have the bigger issue of finding the harmonic mean of -1 and 1 (since 2/(1/-1 + 1/1) = 2/(-1 + 1) = 2/0, which is not defined). Ruakh 02:32, 8 Mar 2005 (UTC)