Talk:Diagonal

Challenging Question: 2 for a triangle, 5 for a square, 12 for a pentagon...

We know a patter for the number of diagonals in an n-gon, but how about the number of regions determined by the number of diagonals??

To make sure you know what I mean, here are some examples:

  • A circle determines 2 regions, the inside and the outside.
  • A checkerboard determines 65 regions, the squares and the area outside the lines.


A regular hexagon has 25. A general hexagon, assumed to have no more than two diagonals intersecting at any point (other than a vertex) has 26. The general position is already done for us http://www.research.att.com/projects/OEIS?Anum=A027927 . -- Smjg 11:08, 26 May 2004 (UTC)


    POLYGON        DIAGONALS     REGIONS DETERMINED BY DIAGONALS
  2 "bi-angle"     0             1
  3 Triangle       0             2
  4 quadrilateral  2             5 (still 5 for a Square)
  5 Pentagon       5            12 (still 12 for a regular pentagon)
  6 Hexagon        9            26 (but only 25 for a regular hexagon)
  7 Heptagon       14           51
  8 Octagon        20           92
  9 Enneagon       27          155
 10 Decagon        35          247
 11 Hendecagon     44          376
 12 Dodecagon      54          551
 13 Triskaidecagon 65          782
 30 Icosagon       170       17876
    Tricontagon    405
    Tetracontagon  740
    Pentacontagon  1175
    Hexacontagon   1710
    Heptacontagon  2345
    Octacontagon   3080
    Ennecontagon   3915
100 Hectagon       4850
    Chiliagon      498,500
    Myriagon       49,985,000
    Googolgon      Extra credit

The numbers in this table come from "the On-Line Encyclopedia of Integer Sequences" http://www.research.att.com/projects/OEIS?Anum=A027927 which lists "a(n) = number of plane regions after drawing (general position) convex n-gon and all diagonals".

Note that this is the "general position convex n-gon", not the "regular n-gon".

The formula is a(n)= 1 + binomial(n,4) + binomial(n-1,2).

(By "binomial()", I mean the binomial coefficient).

If there are any errors, *please* tell the people at "the On-Line Encyclopedia of Integer Sequences" so they can fix it. (Or tell me, and I'll forward it to them).

-- DavidCary 15:49, 26 Jun 2004 (UTC)

What are the number of plane regions after drawing the regular n-gon ?

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools