Manual transmission
|
Speedmechanicstransmission.jpg
Template:Transmission types A manual transmission (also known as a stick shift or standard transmission) is a type of transmission used in automotive applications. Manual transmissions often feature a driver-operated clutch and a movable gear selector, although some do not. Most automobile manual transmissions allow the driver to select any gear at any time, but some, such as those commonly mounted on motorcycles and some types of race cars, only allow the driver to select the next-highest or next-lowest gear ratio. This second type of transmission is sometimes called a sequential manual transmission.
Manual transmissions are characterized by gear ratios which are selectable by engaging pairs of gears inside the transmission. Conversely, automatic transmissions feature clutch packs to select gear ratio. Transmissions which employ clutch packs but allow the driver to manually select the current gear are called semi-automatic transmissions.
Contemporary automotive manual transmissions are generally available with between 4 and 6 forward gears and one reverse gear, although manual transmissions have been built with as few as 2 and as many as 7 gears. Some manuals are referred to by the number of gears they offer (e.g., 5-speed) as a way of distinguishing between automatic or other available manual transmissions. In contrast, a 5-speed automatic transmission is referred to as a 5-speed automatic.
Other types of transmission in mainstream automotive use are the automatic transmission, semi-automatic transmission, and the continuously variable transmission.
Manual transmissions come in two basic types: simple unsynchronized systems where gears are spinning freely and their relative speeds must be synchronized by the operator to avoid noisy and damaging "clashing" and "grinding" when trying to mesh the rotating teeth, and synchronized systems that eliminate this necessity while changing gears.
Contents |
Unsynchronized transmission
The earliest automotive transmissions were entirely mechanical unsynchronized gearing systems. They could be shifted, with multiple gear ratios available to the operator, and even had reverse. But the gears were engaged by sliding mechanisms or simple clutches, which required a skilled operator who could use timing and careful throttle manipulation when shifting, so that the gears would be spinning at roughly the same speed when engaged; otherwise the teeth would refuse to mesh.
When upshifting to a higher gear, the speed of the gear driven by the engine had to drop to match the speed of the next gear; as this happened naturally when the clutch was depressed, it was just a matter of skill and experience to hear and feel when the gears could be persuaded to mesh. However, when downshifting, the gear driven by the engine had to be sped up to mesh with the output gear, requiring that the clutch be engaged so that the engine could be used to speed up the gears; a technique called double declutching was used, which involved shifting the transmission into neutral and speeding up the gears, then shifting from neutral into the lower gear. In fact, such transmissions are often easier to shift from one gear to another without the use of the clutch at all. The clutch, in these cases, is only used for starting from a standstill.
Synchronized transmission
A modern car gearbox is of the constant mesh or synchromesh type, in which all gears are always in mesh but only one of these meshed pairs of gears is locked to the shaft on which it is mounted at any one time, the others being allowed to rotate freely; thus greatly reducing the skill required to shift gears.
In a synchromesh gearbox, the teeth of the gears of all the transmission speeds are always in mesh and rotating, but the gears are not directly rotationally connected to the shafts on which they rotate. Instead, the gears can freely rotate or be locked to the shaft on which they are carried. The locking mechanism for any individual gear consists of a collar on the shaft which is able to slide sideways so that teeth or "dogs" on its inner surface bridge two circular rings with teeth on their outer circumference; one attached to the gear, one to the shaft. (One collar typically serves for two gears; sliding in one direction selects one transmission speed, in the other direction selects the other) When the rings are bridged by the collar, that particular gear is rotationally locked to the shaft and determines the output speed of the transmission. To correctly match the speed of the gear to that of the shaft as the gear is engaged, the collar initially applies a force to a cone-shaped brass clutch which is attached to the gear, which brings the speeds to match prior to the collar locking into place. The collar is prevented from bridging the locking rings when the speeds are mismatched by baulk rings. The gearshift lever manipulates the collars using a set of linkages, so arranged so that only one collar may be permitted to lock only one gear at any one time; when "shifting gears", the locking collar from one gear is disengaged and that of another engaged. In a modern gearbox, the action of all of these components is so smooth and fast it is hardly noticed.
The first synchronized transmission system was introduced by Cadillac in 1929. The modern cone system was developed by Porsche and introduced in the 1952 Porsche 356; cone synchronizers were called "Porsche-type" for many years after this. In the early 1950s only the second-third shift was synchromesh in most cars, requiring only a single synchro and a simple linkage; drivers' manuals in cars suggested that if the driver needed to shift from second to first, it was best to come to a complete stop then shift into first and start up again. With continuing sophistication of mechanical development, however, fully synchromesh transmissions with three speeds, then four speeds, five speeds, six speeds and so on became universal by the 1960s. Reverse gear, however, is not synchromesh, as there is only one reverse gear in the normal automotive transmission and changing gears in reverse is not required.
Even though automotive transmissions are universally synchromesh, heavy trucks and machinery as well as dedicated racing transmissions are still usually nonsynchromesh transmissions, known colloquially as "crashboxes", for several reasons. Being made of brass, synchronizers are prone to wear and breakage more than the actual gears, which are cast iron, and the rotation of all the sets of gears at once results in higher frictional losses. In addition, the process of shifting a synchromesh transmission is slower than that of shifting a nonsynchromesh transmission. For racing of production based transmissions, sometimes half the dogs on the synchros are removed to speed the shifting process, at the expense of much more wear.
Internals
Like other transmissions, a manual transmission has both input and output shafts. Pairs of gears are attached to these shafts such that, when selected, will cause the output shaft to rotate at a given ratio of the input shaft speed. When a driver selects a gear, he is simply selecting a pair of these gears to be used; mechanical connections translate the driver's selection into an appropriate connection of gears and prevent more than one set of gears being engaged at any given time (as that would cause the transmission to lock). The teeth on gears of mass market automobiles are not straight-cut, but are helically cut, in order to reduce gear whine. Reverse gear often is straight-cut, however, leading to a characteristic whine from many cars when reversing.
In racing vehicles (most commonly those involved in drag racing), sometimes a trans-brake is incorporated, allowing the driver to lock the transmission into both first gear and reverse gear at the same time. This serves the purpose of allowing the driver to increase the engine speed without changing the vehicle's speed (much as one would do while in neutral, or while the clutch is disengaged), but being able to transfer as much of the resultant power to the tires in a shorter period of time.
The input shaft of a manual transmission comes from the clutch, and is connected to a layshaft. The lay shaft has one gear on its input end and several on the output end, usually one per selectable gear. The output gears of the layshaft connect to the drive gears. These are fixed in place on the output shaft, which leads to the differential and tires.
Manual transmissions are often equipped with 4, 5, or 6 forward gears. Nearly all have exactly one reverse gear. In three or four speed transmissions, in most cases, the topmost gear is "direct", i.e. a 1:1 ratio. For five speed or higher transmissions, the highest gear is usually an overdrive gear, with a ratio of less than 1:1. Older cars were generally equipped with 3-speed transmissions, or 4-speed transmissions for high performance models and 5-speeds for the most sophisticated of automobiles; in the 1970s, 5-speed transmissions began to appear in low priced mass market automobiles and even compact pickup trucks, pioneered by Toyota (who advertised the fact by giving each model the suffix SR5 as it acquired the fifth speed). Today, mass market automotive manual transmissions are essentially all 5-speeds, with 6-speed transmissions beginning to emerge in high performance vehicles in the early 1990s, and recently beginning to be offered on some high-efficiency and conventional passenger cars.
On earlier models with three or four forward speeds, the lack of an overdrive ratio for relaxed and fuel efficient highway crusing was often filled by incorporation of a separate overdrive unit in the rear housing of the transmission, separately actuated by a knob or button, often incorporated into the gearshift knob.
Clutch
In all vehicles utilizing a transmission (virtually all modern vehicles), a coupling device is utilized to be able to separate the engine and transmission when necessary. The clutch is what accomplishes this in manual transmissions. Without it, the engine and tires would at all times be inextricably linked, and anytime the vehicle is at a stop, so would be the engine.
- When the clutch pedal is fully depressed, the clutch is fully disengaged, and no torque is transferred from the engine to the transmission, and by extension to the drive wheels. This allows for the transmission's gears to be independent of the engine (spinning purely through momentum or, for any engaged gear, the motion of the vehicle). This allows for shifting without gear grinding.
- When the clutch pedal is fully released, the clutch is fully engaged, and essentially all of the engine's torque is transferred.
- In between these extremes, the clutch "slips" to varying degrees. Clutch slippage is useful, because the entire purpose the transmission serves is gear reduction. Because the engine and tires are designed to be linked in order to drive, one must dictate the speed of the other. If there was no slippage, the tires would dictate engine speed, and as such, getting a vehicle to move from rest would be extremely difficult. This slippage allows for the slow introduction of power, with less resistance introduced to the engine until enough momentum is built that the engine can operate normally without output reduction from the clutch.
- Note: Automatic transmissions also utilize a coupling device, however, a clutch is not present. In these kinds of vehicles, the torque converter is used to separate the engine and transmission.
Gear selection
Floor-mounted shifter
In most modern cars, gears are selected through a lever attached to the floor of the automobile—this selector is often called a gearstick, gear lever, gear selector, or simply shifter. Moving this lever forward, backward, left, and right allows the driver to select any given gear. In this configuration, the gear lever must be pushed laterally before it is pushed longitudinally.
A common layout for a 5-speed transmission is shown below. N marks neutral, or the position where no gears are engaged. In reality, the entire horizontal line is a neutral position, although the shifter is usually equipped with springs so that it will return to the N position if not left in another gear. The R denotes reverse, which is technically a sixth gear on this transmission. There is usually a mechanism that only allows selection of reverse from the neutral position, so reverse will be less likely to be accidentally chosen when downshifting from 5th to 4th (or by someone used to a 6-speed transmission and trying to shift from 5th to the non-existent 6th).
1 3 5 │ │ │ ├───N───┤ │ │ │ 2 4 R
This layout is called the shift pattern. The shift pattern for a specific transmission is usually printed on the shifter knob.
Another common five-speed shift pattern is:
R 1 3 5 │ │ │ │ └───┼───N───┘ │ │ 2 4
Transmissions equipped with this shift pattern usually feature a lockout mechanism that requires the driver to depress a switch or the entire gear lever when entering reverse, so that he does not accidentally select it when trying to find first gear.
Most front-engined, rear-wheel drive cars have a transmission that sits between the driver and the front passenger seat. Floor-mounted shifters are often connected directly to the transmission. Front-wheel drive and rear-engined cars often require a mechanical linkage to connect the shifter to the transmission.
A 4-speed floor shifter is sometimes referred to as "Four on the Floor".
Column-mounted shifter
Some older cars feature a gear lever which is mounted on the steering column of the car. Many automatic transmissions still use this placement, but manual column shifters are no longer common.
Column shifters are mechanically similar to floor shifters, although shifting occurs in a vertical plane instead of a horizontal one. Column shifters also generally involve additional linkages to connect the shifter with the transmission.
R 2 │ │ ├─N─┤ │ │ 1 3
The 3-speed shift pattern is typical of American cars, trucks, and vans produced with manual transmissions during the 1950s and 1960s.
First gear in a 3-speed is often called "low," while third is usually called "high." There is, of course, no overdrive.
A 3-speed column shifter is sometimes referred to as "Three on a Tree".
Note that reverse in a car with a column shift is in nearly the same position as park (P) is on a car with a column-mounted gear selector with an automatic transmission.
Sequential manual
Some transmissions do not allow the driver to arbitrarily select any gear. Instead, the driver may only ever select the next-lowest or next-highest gear ratio. These transmissions often provide clutch control, but the clutch is only necessary when selecting first or reverse gear from neutral. Most gear changes can be performed without the clutch.
Sequential transmissions are generally controlled by a forward-backward lever, foot pedal, or set of paddles mounted behind the steering wheel. In some cases, these are connected mechanically to the transmission. In many modern examples, these controls are attached to sensors which instruct a transmission computer to perform a shift—many of these systems can be switched into an automatic mode, where the computer controls the timing of shifts, much like an automatic transmission.
Motorcycles typically employ sequential transmissions, although the shift pattern is modified slightly for safety reasons.
Semi-manual
Some very new transmissions (BMW's Sequential Manual Gearbox (SMG) and Audi's Direct-Shift Gearbox (DSG), for example) are conventional manual transmissions with a computerized control mechanism. These transmissions feature independently selectable gears but do not have a clutch pedal. Instead, the transmission computer controls a servo which disengages the clutch when necessary.
These transmissions vary from sequential transmissions in that they still allow nonsequential shifts: BMWs SMG system, for example, can shift from 6th gear directly to 4th gear when decelerating from high speeds.
Comparison with automatic transmissions
Manual transmissions are typically compared to automatic transmissions, as the two represent the majority of options available to the typical consumer. These comparisons are general guidelines and may not apply in certain circumstances. Additionally, the recent popularity of semi-manual and semi-automatic transmissions renders many of these points obsolete.
Advantages
- Manual transmissions are typically more efficient than automatic transmissions. This is because manuals generally involve a clutch instead of a torque converter, which can cause significant power losses. This results in both better acceleration and fuel economy.
- It is generally easier to build very strong manual transmissions than automatic transmissions. Manual transmissions usually have only one clutch, whereas automatics have many clutch packs.
- Manual transmissions normally do not require active cooling, because not much power is dissipated as heat through the transmission.
- A driver has more direct control over the state of the transmission with a manual than an automatic.
- Manual transmissions are typically cheaper to build than automatic transmissions.
- Manual transmissions generally require less maintenance than automatic transmissions.
- In addition, many people feel that driving a manual forces the driver to pay more attention to the road and to other cars, making it more difficult to become distracted.
- Manual transmissions use less fuel than an automatic transmission. Manual cars will do an extra 2 miles per gallon.
Disadvantages
- Manual transmissions require more driver interaction than automatic transmissions.
- A driver may inadvertently shift into the wrong gear with a manual transmission, potentially causing damage to the engine and transmission as well as compromising safety.
- Manual transmissions are more difficult to learn to drive as one needs to develop a feel for properly engaging the clutch.
- The smooth and quick shifts of an automatic transmission are not guaranteed when operating a manual transmission.
- Manual transmissions require more controls than automatic transmissions. This is an issue in cramped cockpits, cars where a floor-shifter is inconvenient, or in vehicles equipped for disabled drivers.
- Manual transmissions make it especially challenging to start when stopped upward on a hill, especially for newer drivers.
Applications and popularity
Many types of automobiles are equipped with manual transmissions. Small economy cars predominantly feature manual transmissions because they are relatively cheap and efficient, although many are optionally equipped with automatics. Economy cars are also often powered by very small engines, and automatic transmissions can make them comparatively very slow.
Sports cars are also often equipped with manual transmissions because they offer more direct driver involvement and better performance. Off-road vehicles and trucks often feature manual transmissions because they allow direct gear selection and are often more rugged than their automatic counterparts.
Very heavy trucks also feature manual transmissions because they are efficient and, more importantly, can withstand the severe loads encountered in hauling heavy loads.
Conversely, manual transmissions are no longer popular in many classes of cars sold in North America. Nearly all cars are available with an automatic transmission option, and family cars and large trucks are sold predominantly with automatics. Most luxury cars are unavailable with a manual transmission. In situations where automatics and manual transmissions are sold side-by-side, the manual transmission is the base equipment, and the automatic is optional—although the automatic is sometimes available at no extra cost.
Some cars, such as rental cars and taxis, are nearly universally equipped with automatic transmissions in the US.
Driving technique
Maintenance
Because clutches use changes in friction to modulate the transfer of torque between engine and transmission, they are subject to wear in everyday use. A very good clutch, when used by an expert driver, can last hundreds of thousands of kilometres, whereas weak clutches or inexperienced drivers can lead to more frequent repair or replacement.
Manual transmissions are lubricated with gear oil, which must be changed periodically, although not as frequently as the automatic transmission fluid in a vehicle so equipped. Gear oil has a characteristic aroma, due to the addition of molybdenum disulfide compounds, to lubricate the large degree of sliding friction seen by the teeth due to their helical cut, which in turn is done to eliminate the characteristic whine of straight cut gears. Some manufacturers, however, such as Honda, do not use this additive in their gear lube, specifying regular motor oil until recently, and now their own brand of gear lube which seems to be an enhanced version of motor oil.