Nanowire
|
A "nanowire" is a wire of dimensions of the order of a nanometer (<math>10^{-9}<math> meters). At these scales, quantum mechanical effects are important - hence such wires are also known as "quantum wires".
The nanowires could be used, in a near feature, as components of nanotechnology to create electrical circuits out of compounds that are capable of being formed into extremely small circuits.
Contents |
Physics of nanowires
Production of nanowires
Nanowire are not observed spontaneously in nature and must be produced in a laboratory. Nanowires can be either suspended or deposited.
A suspended nanowire is a wire in vacuum chamber held at the extremities. A deposited nanowire is a wire deposited on a surface of different nature: e.g. it could even be a single strip of metallic atoms over a non-conducting surface.
A suspended nanowire can be produced by chemical etching of a bigger wire, or bombarding a bigger wire with some highly energetic particles (atoms or molecules).
Another way to produce a suspended nanowire is to indent the tip of an STM in the surface, of a metal near the melting point, and retract it. This can form a wire very much like the tip of a fork does with the cheese of a pizza.
A common technique for creating a nanowire is the Vapor-Liquid-Solid (VLS) synthesis method. This technique uses as source material either laser ablated particles or a feed gas (such as silane). The source is then exposed to a catalyst. For nanowires, the best catalysts are liquid metal (such as gold) nanoclusters, which can either be purchased in colloidal form and deposited on a substrate or self-assembled from a thin film by dewetting. This process can often produce crystalline nanowires in the case of semiconductor materials.
The source enters these nanoclusters and begins to saturate it. Once supersaturation is reached, the source solidifies and grows outward from the nanocluster. The final product's length can be adjusted by simply turning off the source. Compound nanowires with super-lattices of alternating materials can be created by switching sources while still in the growth phase.
Conductivity of nanowires
The conductivity of a nanowire can be studied suspending it between two electrodes.
Nanowires show peculiar electrical properties due to their size. Unlike carbon nanotubes, whose motion of electrons can fall under the regime of ballistic transport (meaning the electrons can travel freely from one electrode to the other), nanowire conductivity is strongly influenced by edge effects. The edge effects come from atoms that lay at the nanowire surface and are not fully bonded to neighboring atoms like the atoms within the bulk of the nanowire. The unbonded atoms are often a source of defects within the nanowire, and may cause the nanowire to conduct electricity more poorly than the bulk material. As a nanowire shrinks in size, the surface atoms becomes more numerous compared to the atoms within the nanowire, and edge effects become more important.
Furthermore the conductivity can undergo a quantization in energy: i.e. the energy of the electrons going through a nanowire can assume only discrete values, multiple of the Landauer constant G = 2e / h (where e is the charge of the electron and h is Planck's constant).
The conductivity is hence described as the sum of the transport by separate channels of different quantized energy levels. The thinner the wire is, the smaller the number of channels available to the transport of electrons.
This has been proven by measuring the conductivity of a nanowire while pulling it: while it shrinks, its conductivity decreases in a stepwise fashion and the plateaus correspond to multiples of G.
Structure of nanowires
The nanowires can show peculiar shapes. Sometimes they can show noncrystalline order, assuming e.g. a pentagonal symmetry or a helicoidal (spiral) shape.
The lack of crystalline order is due to the fact that a nanowire is periodic only in one dimension (along its axis). Hence it can assume any order in the other directions (in plane) if this is energetically favorable.
E.g., in some cases nanowires can show a fivefold symmetry, usually not observed in nature, but for clusters of few atoms. The fivefold symmetry is equivalent to the icosahedral symmetry of (small) atomic clusters: the icosahedron is often an energetically favorable shape for cluster of few atoms, but icosahedral ordering is not observed in crystals since it is not possible to stack together icosahedra (repeating infinite copies of them in each direction) and tile the whole space (fill it without holes).
Use of nanowires
Nanowires still belong to the experimental world of laboratories. However, some early experiments have shown how they can be used to build the next generation of computing devices.
To create active electronic elements, the first key step was to chemically dope a semiconductor nanowire. This has already been done to individual nanowires to create p-type and n-type semiconductors.
The next step was to find a way to create a p-n junction, one of the simplest electronic devices. This was achieved in two ways. The first way was to physically cross a p-type wire over an n-type wire. The second method involved chemically doping a single wire with different dopants along the length. This method created a p-n junction with only one wire.
After p-n junctions were built with nanowires, the next logical step was to build logic gates. By putting connecting several p-n junctions together, researchers have been able to create the basis of all logic circuits: the AND, OR, and NOT gates have all been built from semiconductor nanowire crossings.
It's possible that semiconductor nanowire crossings will be important to the future of digital computing. Though there are other uses for nanowires beyond these, the only ones that actually take advantage of physics in the nanometer regime are electronic.
References
- R. Landauer, J. Phys.: Cond. Matter 1, 8099 (1989) [1] (http://www.jsapi.jsap.or.jp/Pdf/Number03/CuttingEdge1.pdf)