Muscle spindle
|
A muscle spindle is a specialized muscle structure innervated by both sensory and motor neuron axons. Its functions are to send proprioceptive information about the muscle to the central nervous system, and to respond to muscle stretching.
Contents |
Anatomy
Muscle spindles are found within the fleshy portions of muscles, embedded in so-called extrafusal muscle fibers. They are composed of 3-10 intrafusal muscle fibers, of which there are two types, nuclear bag fibers and nuclear chain fibers and the axons of sensory neurons. Axons of motoneurons also terminate in muscle spindles; they make synapses at either or both of the ends of the intrafusal muscle fibers and regulate spindle sensitivity. Muscle spindles are encapsulated by connective tissue, and are aligned parallel to extrafusal muscle fibers, unlike Golgi tendon organs, which are oriented in series.
The muscle spindle has both sensory and motor components. Primary and secondary sensory fibers spiral around and synapse on the central portions of intrafusal fibers, providing the sensory component of the structure via stretch-sensitive excitatory ion-channels of the axons. The motor component is provided by a gamma motoneuron that innervates the spindle and causes a slight contraction of the end portions of the intrafusal muscle fibers when activated.
Sensitivity Modification
The function of the gamma motoneuron neuromuscular junction is not to supplement the general muscle contraction provided by extrafusal fibers, but to modify the sensitivity of the muscle spindle to stretch. Upon release of acetylcholine by the gamma neuron, the end portions of the intrafusal muscle fibers contract, thus deliberately elongating the non-contractile central portions of intrafusal muscle fibers. This opens stretch-sensitive ion channels of the centrally-positioned sensory axons, leading to an influx of sodium ions. This raises the resting potential of these axons, thereby increasing the probability of action potential firing, thus increasing the sensitivity of the muscle spindle.
Stretch reflex
When a muscle is stretched, primary sensory fibers (Group Ia afferent neurons) of the muscle spindle respond to both the velocity and the degree of stretch, and send this information to the spinal cord. Likewise, secondary sensory fibers (Group II afferent neurons) detect and send information about the degree of stretch (but not the velocity thereof) to the CNS. This information is transmitted monosynaptically to an alpha efferent motor fiber, which activates extrafusal fibers of the muscle to contract, thereby reducing stretch, and polysynaptically through an interneuron to another alpha motoneuron, which inhibits contraction in opposing muscles.
PNF stretching, or proprioceptive neuromuscular facilitation, is a method of flexibility training that reduces the automatic reflex action in order allow muscles to lengthen.
Development
It is also believed that muscle spindles play a critical role in sensorimotor development.