Menger sponge

The Menger sponge is a fractal solid. It is also known as the Menger-Sierpinski sponge or, incorrectly, the Sierpinski sponge. It is a three-dimensional extension of the Cantor set and Sierpinski carpet, with Hausdorff dimension (ln 20) / (ln 3) (approx. 2,726833). It was first described by Austrian mathematician Karl Menger in 1926.

Contents

Construction

Missing image
Menger_sponge_(Level_1-4).jpg
Menger sponge, first four levels of the construction.

Construction of a Menger sponge can be visualized as follows:
  1. Begin with a cube, (first image).
  2. Shrink the cube to <math>1/3<math> of its original size and make 20 copies of it.
  3. Place the copies so they will form a new cube of the same size as the original one but lacking the centerparts, (next image).
  4. Repeat the process from step 2 for each of the remaining smaller cubes.

After an infinite number of iterations, a Menger sponge will remain.

The number of cubes increases by : <math>20^n<math>. Where <math>n<math> is the number of iterations performed on the first cube:

Iters Cubes Sum
0 1 1
1 20 21
2 400 421
3 8,000 8,421
4 160,000 168,421
5 3,200,000 3,368,421
6 64,000,000 67,368,421

At the first level, no iterations are performed, (20 n=0 = 1).

Properties

An illustration of M3, the third iteration of the construction process. Image © Paul Bourke (http://astronomy.swin.edu.au/~pbourke/), used by permission
An illustration of M3, the third iteration of the construction process. Image © Paul Bourke (http://astronomy.swin.edu.au/~pbourke/), used by permission

Each face of the Menger sponge is a Sierpinski carpet; furthermore, any intersection of the Menger sponge with a diagonal or medium of the initial cube M0 is a Cantor set. The Menger sponge is a closed set; since it is also bounded, the Heine-Borel theorem yields that it is compact. Furthermore, the Menger sponge is uncountable and has Lebesgue measure 0.

The topological dimension of the Menger sponge is one; indeed, the sponge was first constructed by Menger in 1926 while exploring the concept of topological dimension. Note that the topological dimension of any curve is one; that is, curves are topologically one-dimensional. Menger showed, in the 1926 construction, that the sponge is a universal curve, in that any possible one-dimensional curve is homeomorphic to a subset of the Menger sponge. Note that by curve we mean any object of Lebesgue covering dimension one; this includes trees and graphs with an arbitrary countable number of edges, vertices and closed loops, connected in arbitrary ways.

In a similar way, the Sierpinski gasket is a universal curve for all curves that can be drawn on the two-dimensional plane. The Menger sponge constructed in three dimensions extends this idea to graphs that are not flat, and might be embedded in any number of dimensions. Thus, as a humorous example, any geometry of quantum loop gravity can be embedded in a Menger sponge.


Formal definition

Formally, a Menger sponge can be defined as follows:

<math>M := \bigcap_{n\in\mathbb{N}} M_n<math>

where M0 is the unit cube and

<math>M_{n+1} := \left\{\begin{matrix}

(x,y,z)\in\mathbb{R}^3: & \begin{matrix}\exists i,j,k\in\{0,1,2\}: (3x-i,3y-j,3z-k)\in M_n \\ \mbox{and at most one of }i,j,k\mbox{ is equal to 1}\end{matrix} \end{matrix}\right\}<math>

See also

References

  • Karl Menger, General Spaces and Cartesian Spaces, (1926) Communications to the Amsterdam Academy of Sciences. English translation reprinted in Classics on Fractals, Gerald A.Edgar, editor, Addison-Wesley (1993) ISBN 0-201-58701-7
  • Karl Menger, Dimensionstheorie, (1928) B.G Teubner Publishers, Lepzig.

External links

pl:Kostka Mengera sv:Mengers tvättsvamp

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools