Tree (graph theory)

Missing image
Tree_graph.png
A labeled tree with 6 vertices and 5 edges

In graph theory, a tree is a graph in which any two vertices are connected by exactly one path. A forest is a graph in which any two vertices are connected by at most one path. An equivalent definition is that a forest is a disjoint union of trees (hence the name).

Contents

Definitions

A tree is an undirected simple graph G that satisfies any of the following equivalent conditions:

  • G is connected and has no simple cycles
  • G has no simple cycles and, if any edge is added to G, then a simple cycle is formed
  • G is connected and, if any edge is removed from G, then it is not connected anymore
  • Any two vertices in G can be connected by a unique simple path.

If G has finitely many vertices, say n of them, then the above statements are also equivalent to:

  • G is connected and has n − 1 edges
  • G has no simple cycles and has n − 1 edges

An undirected simple graph G is called a forest if it has no simple cycles.

A tree is called a rooted tree if one vertex has been designated the root, in which case the edges have a natural orientation, towards or away from the root. Rooted trees, often with additional structure such as ordering of the neighbors at each vertex, are a key data structure in computer science; see tree data structure.

A labeled tree is a tree in which each vertex is given a unique label. The vertices of a labeled tree on n vertices are typically given the labels {1, 2, ..., n}.


Example

The example tree shown to the right has 6 vertices and 6 − 1 = 5 edges. The unique simple path connecting the vertices 2 and 6 is 2-4-5-6.

Facts

Every tree is a planar and bipartite graph.

Every connected graph G admits a spanning tree, which is a tree that contains every vertex of G and whose edges are edges of G.

Given n labeled vertices, there are nn−2 different ways to connect them to make a tree. This result is called Cayley's formula.

The number of trees with n vertices of degree d1,d2,...,dn is

<math> {n-2 \choose d_1-1, d_2-1, \ldots, d_n-1},<math>

which is a multinomial coefficient.

No closed formula for the number t(n) of trees with n vertices up to graph isomorphism is known. However, the asymptotic behavior of t(n) is known: there are numbers α ≈ 3 and β ≈ 0.5 such that

<math>\lim_{n\to\infty} \frac{t(n)}{\beta \alpha^n n^{-5/2}} = 1.<math>

Types of trees

See List of graph theory topics: Trees.

Related articles

de:W鋖der und B鋟me in der Graphentheorie he:עץ (תורת הגרפים) it:albero (grafo) ja:木 (数学) lt:Medis (grafų teorija) pl:drzewo (matematyka) fi:puu (graafiteoria) th:ต้นไม้ (ทฤษฎีกราฟ) zh:树_(图论)

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools