Mathematical biology

Mathematical biology or biomathematics is an interdisciplinary field of academic study which aims at modelling natural, biological processes using mathematical techniques and tools. It has both practical and theoretical applications in biological research.

Contents

Research

Below is a list of some areas of research in mathematical biology and links to related projects in various universities:

  • Modelling of arterial disease [1] (http://www.maths.gla.ac.uk/~nah/research_interests.html)
  • Modelling of neurons and carcinogenesis [2] (http://www.maths.gla.ac.uk/research/groups/biology/kal.htm)
  • Mechanics of biological tissues [3] (http://www.maths.gla.ac.uk/~rwo/research_areas.htm)
  • Theoretical enzymology and enzyme kinetics [4] (http://www.informatics.indiana.edu/schnell/research/enzymology.asp)
  • Cancer modelling and simulation [5] (http://calvino.polito.it/~biomat/)
  • Swarming behaviour [6] (http://www.math.ubc.ca/people/faculty/keshet/research.html)
  • Multi-scale modelling of the heart [7] (http://www.integrativebiology.ox.ac.uk/heartmodel.html)
  • Travelling waves in a wound-healing assay [8] (http://www.maths.ox.ac.uk/~maini/public/gallery/twwha.htm)
  • The mechanochemical theory of morphogenesis [9] (http://www.maths.ox.ac.uk/~maini/public/gallery/mctom.htm)
  • Biological pattern formation [10] (http://www.maths.ox.ac.uk/~maini/public/gallery/bpf.htm)
  • Modelling the movement of interacting cell populations [11] (http://www.ma.hw.ac.uk/~jas/researchinterests/index.html)
  • Mathematical modelling of scar tissue formation [12] (http://www.ma.hw.ac.uk/~jas/researchinterests/scartissueformation.html)

These examples are characterised by complex, nonlinear mechanisms and it is being increasingly recognised that the result of such interactions may only be understood through mathematical and computational models. Due to the wide diversity of specific knowledge involved, biomathematical research is often done in collaboration between mathematicians, physicists, biologists, physicians, zoologists, chemists etc.

Bibliographical references

  • J.D. Murray, Mathematical Biology. Springer-Verlag, 3rd ed. in 2 vols.: Mathematical Biology: I. An Introduction, 2002 ISBN 0387952233; Mathematical Biology: II. Spatial Models and Biomedical Applications, 2003 ISBN 0387952284.
  • L. Edelstein-Keshet, Mathematical Models in Biology. SIAM, 2004. ISBN 0075549506
  • L.A. Segel, Modeling dynamic phenomena in molecular and cellular biology. C.U.P., 1984. ISBN 052127477X
  • F. Hoppensteadt, Mathematical theories of populations: demographics, genetics and epidemics. SIAM, Philadelphia, 1975 (reprinted 1993). ISBN 0898710170
  • S.I. Rubinow, Introduction to mathematical biology. John Wiley, 1975. ISBN 0471744468
  • A. Goldbeter, Biochemical oscillations and cellular rhythms. C.U.P., 1996. ISBN 0521599466
  • E. Renshaw, Modelling biological populations in space and time. C.U.P., 1991. ISBN 0521448557
  • P.G. Drazin, Nonlinear systems. C.U.P., 1992. ISBN 0521406684
  • D.W. Jordan and P. Smith, Nonlinear ordinary differential equations, 2nd ed. O.U.P., 1987. ISBN 0198565623

External references

Internal links

External links


General subfields within biology
Anatomy | Astrobiology | Biochemistry | Bioinformatics | Botany | Cell biology | Ecology | Developmental biology | Evolutionary biology | Genetics | Genomics | Marine biology | Human biology | Microbiology | Molecular biology | Origin of life | Paleontology | Parasitology | Physiology | Taxonomy | Zoology
fr : Biomathématique

pl:Biomatematyka zh:生物数学

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools