Population genetics

Population genetics is the study of the distribution of and change in allele frequencies under the influence of the five evolutionary forces: natural selection, genetic drift, mutation, migration and nonrandom mating. It also takes account of population subdivision and population structure in space. As such, it attempts to explain such phenomena as adaptation and speciation. Population genetics was a vital ingredient in the modern evolutionary synthesis, its primary founders were Sewall Wright, J. B. S. Haldane and Ronald Fisher, who also laid the foundations for the related discipline of quantitative genetics.

Contents

Scope and theoretical considerations

Perhaps the most significant "formal" achievement of the modern evolutionary synthesis has been the framework of mathematical population genetics. Indeed some authors (Beatty 1986) would argue that it defines core of the modern synthesis.

Lewontin (1974) outlined the theoretical task for population genetics. He imagined two spaces: a "genotypic space" and a "phenotypic space". The challenge of a complete theory of population genetics is to provide a set of laws that predictably map a population of genotypes (G1) to a phenotype space (P1), where selection takes place, and another set of laws that map the resulting population (P2) back to genotype space (G2) where Mendelian genetics can predict the next generation of genotypes, thus completing the cycle. Even leaving aside for the moment the non-Mendelian aspects revealed by molecular genetics, this is clearly a gargantuan task. Visualizing this transformation:

<math>G_1 \rightarrow^{T_1}P_1 \rightarrow^{T_2}P_2 \rightarrow^{T_3}G_2

\rightarrow^{T_4}G_1' \rightarrow \cdots<math>

(adapted from Lewontin 1974, p. 12).

T1 represents the genetic and epigenetic laws, the aspects of functional biology, or development, that transform a genotype into phenotype. We will refer to this as the "genotype-phenotype map". T2 is the transformation due to natural selection, T3 are epigenetic relations that predict genotypes based on the selected phenotypes and finally T4 the rules of Mendelian genetics.

In practice, there are two bodies of evolutionary theory that exist in parallel, traditional population genetics operating in the genotype space and the biometric theory used in plant and animal breeding, operating in phenotype space. The missing part is the mapping between the genotype and phenotype space. This leads to a "sleight of hand" (as Lewontin terms it) whereby variables in the equations of one domain, are considered parameters or constants, where, in a full-treatment they would be transformed themselves by the evolutionary process and are in reality functions of the state variables in the other domain. The "sleight of hand" is assuming that we know this mapping, and it is certainly true that it is sufficient to proceed as if we do understand it, to analyze many cases of interest. For example, if the phenotype is almost one-to-one with genotype (sickle-cell anemia) or the time-scale is sufficiently short, the "constants" can be treated as such; however, there are many situations where it is inaccurate.

Population geneticists

The three founders of population genetics were the Britons Ronald Fisher, J.B.S. Haldane and the American Sewall Wright. Fisher and Wright had some fundamental disagreements and a controversy about the relative roles of selection and drift continued for much of the century between the Americans and the British. The Frenchman Gustave Malécot was also important early in the development of the discipline. John Maynard Smith was Haldane's pupil, whilst W.D. Hamilton was heavily influenced by the writings of Fisher. The American George R. Price worked with both Hamilton and Maynard Smith. On the American side, Richard Lewontin and the Japanese Motoo Kimura were heavily influenced by Wright. Luigi Luca Cavalli-Sforza is Stanford-based population geneticist particularly interested in human population genetics.

See also

References

  • J. Beatty. 1986. "The synthesis and the synthetic theory" in Integrating Scientific Disciplines, edited by W. Bechtel and Nijhoff. Dordrecht.
  • John Gillespie Population Genetics: A Concise Guide, Johns Hopkins Press, 1998 ISBN 0-8018-5755-4
  • Daniel Hartl Primer of Population Genetics, 3rd edition, Sinauer, 2000 ISBN 0878933042
  • Daniel Hartl and Andrew Clark Principles of Population Genetics, 3rd edition, Sinauer 1997 ISBN 0-87893-306-9
  • Richard C. Lewontin. 1974. The Genetic Basis of Evolutionary Change. Columbia University Press. New York.

External links

Topics in population genetics
Key concepts: Hardy-Weinberg law | Fisher's fundamental theorem | neutral theory
Selection: natural | sexual | artificial | ecological
Genetic drift: small population size | population bottleneck | founder effect
Founders: Ronald Fisher | J.B.S. Haldane | Sewall Wright
Related topics: evolution | microevolution | evolutionary game theory | fitness landscape
List of evolutionary biology topics
Subfields of genetics
Classical genetics | Ecological genetics | Molecular genetics | Population genetics | Quantitative genetics
Related topics: Genomics | Reverse genetics
Basic topics in evolutionary biology
Processes of evolution: macroevolution - microevolution - speciation
Mechanisms: selection - genetic drift - gene flow - mutation
Modes: anagenesis - catagenesis - cladogenesis
History: Charles Darwin - The Origin of Species - modern evolutionary synthesis
Subfields: population genetics - ecological genetics - human evolution - molecular evolution - phylogenetics - systematics - evo-devo
List of evolutionary biology topics | Timeline of evolution

de:Populationsgenetik fr:Génétique des populations nl:Populatiegenetica ja:集団遺伝学 pt:Genética de populações zh:群体遗传学

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools