Inverse functions and differentiation

In mathematics, the inverse of a function <math>y = f(x)<math> is a function that, in some fashion, "undoes" the effect of <math>f<math> (see inverse function for a formal and detailed definition). The inverse of <math>f<math> is denoted <math>f^{-1}<math>. The statements y=f(x) and x=f-1(y) are equivalent.

Differentiation in calculus is the process of obtaining a derivative. The derivative of a function gives the slope at any point.

<math>\frac{dy}{dx} <math> denotes the derivative of the function <math>y=f(x)<math> with respect to <math>x<math>.

<math>\frac{dx}{dy} <math> denotes the derivative of the function <math>x=f(y)<math> with respect to <math>y<math>.

The two derivatives are, as the Leibniz notation suggests, reciprocal, that is

<math>\frac{dx}{dy}\,\cdot\, \frac{dy}{dx} = 1 <math>

This is a direct consequence of the chain rule, since

<math> \frac{dx}{dy}\,\cdot\, \frac{dy}{dx} = \frac{dx}{dx} <math>

and the derivative of <math> x <math> with respect to <math> x <math> is 1. Geometrically, a function and inverse function have graphs that are reflections, in the line y=x. This reflection operation turns the gradient of any line into its reciprocal.

Examples

  • <math>y = x^2<math> (for positive <math>x<math>) has inverse <math>x = \sqrt{y}<math>.
<math> \frac{dy}{dx} = 2x

\mbox{ }\mbox{ }\mbox{ }\mbox{ }; \mbox{ }\mbox{ }\mbox{ }\mbox{ } \frac{dx}{dy} = \frac{1}{2\sqrt{y}} <math>

<math> \frac{dy}{dx}\,\cdot\,\frac{dx}{dy} = 2x . \frac{1}{2\sqrt{y}} = \frac{2x}{2x} = 1 <math>

At x=0, however, there is a problem: the graph of the square root function becomes vertical, corresponding to a horizontal tangent for the square function.

  • <math>y = e^x<math> has inverse <math> x = \ln (y)<math> (for positive <math>y<math>).
<math> \frac{dy}{dx} = e^x

\mbox{ }\mbox{ }\mbox{ }\mbox{ }; \mbox{ }\mbox{ }\mbox{ }\mbox{ } \frac{dx}{dy} = \frac{1}{y} <math>

<math> \frac{dy}{dx}\,.\,\frac{dx}{dy} = e^x . \frac{1}{y} = \frac{e^x}{e^x} = 1 <math>

Additional properties

  • Integrating this relationship gives
<math>{f^{-1}}(y)=\int\frac{1}{f'(x)}\,\cdot\,{dx} + c<math>
This is only useful if the integral exists. In particular we need <math> f'(x) <math> to be non-zero across the range of integration.
It follows that functions with continuous derivative have inverses in a neighbourhood of every point where the derivative is non-zero. This need not be true if the derivative is not continuous.

Related topics

calculus, inverse functions, chain rule, inverse function theorem, implicit function theorem.

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools