Inverse function

In mathematics, an inverse function is in simple terms a function which "does the reverse" of a given function. More formally, if f is a function with domain X, then f −1 is its inverse function if and only if for every <math>x \in X<math> we have:

<math>f^{-1}(f(x))=f(f^{-1}(x))=x<math>.

For example, if the function x → 3x + 2 is given, then its inverse function is x → (x−− 2) / 3. This is usually written as:

<math>f\colon x\to 3x+2<math>
<math>f^{-1}\colon x\to(x-2)/3<math>

The superscript "−1" is not an exponent. Similarly, as long as we are not in trigonometry, f 2(x) means "do f twice", that is f(f(x)), not the square of f(x). For example, if : f : x → 3x + 2, then f 2 : x = 3 ((3x + 2)) + 2, or 9x + 8. However, in trigonometry, for historical reasons, sin2(x) usually does mean the square of sin(x). As such, the prefix arc is sometimes used to denote inverse trigonometric functions, e.g. arcsin x for the inverse of sin(x).

Simplifying rule

Generally, if f(x) is any function, and g is its inverse, then g(f(x)) = x and f(g(x)) = x. In other words, an inverse function undoes what the original function does. In the above example, we can prove f−1 is the inverse by substituting (x − 2) / 3 into f, so

3(x − 2) / 3 + 2 = x.

Similarly this can be shown for substituting f into f−1.

Indeed, an alternative definition of an inverse function g of f is to require that g o f resp. f o g be the identity function on the domain resp. codomain of f.

Existence

For a function f to have a valid inverse, it must be a bijection, that is:

  • (f is onto) each element in the codomain must be "hit" by f: otherwise there would be no way of defining the inverse of f for some elements
  • (f is one-to-one) each element in the codomain must be "hit" by f only once: otherwise the inverse function would have to send that element back to more than one value.

If f is a real-valued function, then for f to have a valid inverse, it must pass the horizontal line test, that is a horizontal line <math>y=k<math> placed on the graph of f must pass through f exactly once for all real k.

It is possible to work around this condition, by redefining f's codomain to be precisely its range, and by admitting a multi-valued function as an inverse.

If one represents the function f graphically in an x-y coordinate system, then the graph of f −1 is the reflection of the graph of f across the line y = x.

Algebraically, one computes the inverse function of f by solving the equation

<math>y=f(x)<math>

for x, and then exchanging y and x to get

<math>y=f^{-1}(x)<math>

This is not always easy; if the function f(x) is analytic, the Lagrange inversion theorem may be used.

The symbol f −1 is also used for the (set valued) function associating to an element or a subset of the codomain, the inverse image of this subset (or element, seen as a singleton).

See also

fr:Application réciproque pl:funkcja odwrotna uk:Обернена функція

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools