Gudermannian function
|
Missing image
Gudermannian.png
Gudermannian.png
The Gudermannian function, named after Christoph Gudermann (1798 - 1852), relates the circular and hyperbolic trigonometric functions without resorting to complex numbers. It is defined by
- <math>{\rm gd}(x)=\int_0^x \frac{dt}{\cosh t}<math>
- <math>{}=2\arctan \left(\tanh\frac{x}{2}\right)<math>
- <math>{}=2\arctan e^x-{\pi\over2}.<math>
Note that
- <math>\tanh\frac{x}{2} = \tan \frac{\mbox{gd}(x)}{2}.\,<math>
The following identities also hold:
- <math>\sinh(x)=\tan(\mbox{gd}(x))\ <math>
- <math>\cosh(x)=\sec(\mbox{gd}(x))\ <math>
- <math>\tanh(x)=\sin(\mbox{gd}(x))\ <math>
- <math>\mbox{sech}(x)=\cos(\mbox{gd}(x))\ <math>
- <math>\mbox{csch}(x)=\cot(\mbox{gd}(x))\ <math>
- <math>\coth(x)=\csc(\mbox{gd}(x))\ <math>
The inverse Gudermannian function is given by
- <math>{\rm gd}^{-1}(x)=\int_0^x \frac{dt}{\cos t}\,<math>
- <math>=\ln(\tan x+\sec x)\,<math>
- <math>=\ln \tan \left(\frac{\pi}{4} + \frac{x}{2}\right)\,<math>
- <math>=\frac{1}{2}\ln\left(\frac{1+\sin x}{1-\sin x} \right)\,<math>
The derivatives of the Gudermannian and its inverse are
- <math>{d \over dx}\,\mbox{gd}(x)=\mbox{sech}(x)<math>
- <math>{d \over dx}\,\mbox{gd}^{-1}(x)=\sec(x)<math>
See also
References
- CRC Handbook of Mathematical Sciences 5th ed. pp 323-5.
External links
- Gudermannian Function (http://mathworld.wolfram.com/GudermannianFunction.html) at MathWorld