Gudermannian function

Missing image
Gudermannian.png
Gudermannian function with its asymptotes y = ±π/2 marked in gray.

The Gudermannian function, named after Christoph Gudermann (1798 - 1852), relates the circular and hyperbolic trigonometric functions without resorting to complex numbers. It is defined by

<math>{\rm gd}(x)=\int_0^x \frac{dt}{\cosh t}<math>
<math>{}=2\arctan \left(\tanh\frac{x}{2}\right)<math>
<math>{}=2\arctan e^x-{\pi\over2}.<math>

Note that

<math>\tanh\frac{x}{2} = \tan \frac{\mbox{gd}(x)}{2}.\,<math>

The following identities also hold:

<math>\sinh(x)=\tan(\mbox{gd}(x))\ <math>
<math>\cosh(x)=\sec(\mbox{gd}(x))\ <math>
<math>\tanh(x)=\sin(\mbox{gd}(x))\ <math>
<math>\mbox{sech}(x)=\cos(\mbox{gd}(x))\ <math>
<math>\mbox{csch}(x)=\cot(\mbox{gd}(x))\ <math>
<math>\coth(x)=\csc(\mbox{gd}(x))\ <math>

The inverse Gudermannian function is given by

<math>{\rm gd}^{-1}(x)=\int_0^x \frac{dt}{\cos t}\,<math>
<math>=\ln(\tan x+\sec x)\,<math>
<math>=\ln \tan \left(\frac{\pi}{4} + \frac{x}{2}\right)\,<math>
<math>=\frac{1}{2}\ln\left(\frac{1+\sin x}{1-\sin x} \right)\,<math>

The derivatives of the Gudermannian and its inverse are

<math>{d \over dx}\,\mbox{gd}(x)=\mbox{sech}(x)<math>
<math>{d \over dx}\,\mbox{gd}^{-1}(x)=\sec(x)<math>

See also

References

  • CRC Handbook of Mathematical Sciences 5th ed. pp 323-5.

External links

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools