Earwax
|
Cerumen, commonly known as earwax, is a yellowish, waxy substance secreted in the ear canal of humans and many other mammals. It plays a vital role in the human ear canal, assisting in cleaning and lubrication, and also provides a degree of protection from bacteria, fungus, and insects. A comprehensive review of the physiology and pathophysiology of cerumen can be found in Roeser and Ballachanda (1997). Excess or impacted cerumen can press against the eardrum and/or occlude the external auditory canal and impair hearing.
Contents |
Production
Cerumen is produced in the outer third of the cartilaginous portion of the human ear canal. It is a mixture of viscous secretions from sebaceous glands and less-viscous ones from modified apocrine sweat glands (Alvord & Farmer, 1997). Cerumen is genetically determined – Asians and Native Americans are more likely to have the dry type of cerumen (grey and flaky), whereas Caucasians and Africans are more likely to have the wet type (honey-brown to dark-brown and moist; Overfield, 1985). In fact, cerumen type has been used by anthropologists to track human migratory patterns, such as those of the Inuit (Bass & Jackson, 1977).
Function
Cleaning: Cleaning of the ear canal occurs as a result of the "conveyor belt" process of epithelial migration, aided by jaw movement (Alberti, 1964). Cells formed in the centre of the tympanic membrane migrate outwards from the umbo (at a rate equivalent to that of fingernail growth) to the walls of the ear canal, and accelerate towards the entrance of the ear canal. The cerumen in the canal is also carried outwards, taking with it any dirt, dust, and particulate matter that may have gathered in the canal. Jaw movement assists this process by dislodging debris attached to the walls of the ear canal, increasing the likelihood of its extrusion.
Lubrication: Lubrication prevents desiccation and itching of the skin within the ear canal (known as asteatosis). The lubricative properties arise from the high lipid content of the sebum produced by the sebaceous glands. In wet-type cerumen at least, these lipids include cholesterol, squalene, and many long-chain fatty acids and alcohols (Harvey, 1989; Bortz et al., 1990).
Antibacterial and antifungal roles: While studies conducted up until the 1960s found little evidence supporting an antibacterial role for cerumen (e.g. Perry & Nicholas, 1956), more recent studies have found that cerumen provides some bactericidal protection against some strains of bacteria. Chai and Chai (1980), and Stone and Fulgham (1984), found cerumen to be effective in reducing the viability of a wide range of bacteria (sometimes by up to 99%), including Haemophilus influenzae, Staphylococcus aureus, and many variants of Escherischia coli. The growth of two fungi commonly present in otomycosis was also significantly inhibited by human cerumen (Megarry et al., 1988). These antimicrobial properties are due principally to the presence of saturated fatty acids, lysozyme and, especially, to the relatively low pH of cerumen (typically around 6.1 in normal individuals; Roland & Marple, 1997).
Removal
Excessive cerumen may impede the passage of sound in the ear canal, causing conductive hearing loss. It is also estimated to be the cause of 60 - 80% of hearing aid repairs (Oliveira, 1997). As mentioned above, movement of the jaw helps the ears' natural cleaning process, so chewing gum and talking can both help. If this is insufficent, the most common method of cerumen removal by general practitioners is syringing. A curette method is more likely to be used by otologists and ENTs when the ear canal is partially occluded and the material is not adhering to the skin of the ear canal. It is usually necessary to soften wax before its removal, a process referred to as cerumenolysis. Ear wax may be softened by introducing oil into the ear canal. While medicinal grade oil is preferred, any oil (cooking, baby oil, etc) may be used.
Earwax can also be removed by irrigating the ear with body temperature water. Never irrigate the ear if the eardrum is not known to be intact, because irrigation with a ruptured eardrum may cause ear infection or acoustic trauma. Never irrigate if the ears have burning, bleeding, pus discharge, or pain, without calling a doctor first. Never irrigate the ear with a jet irrigator designed for cleaning teeth (such as a WaterPik) because the force of the irrigation may damage the eardrum. A syringe should be used to gently stream water into the ear. For adults, the flow rate should be about 10 mL/s and the flow speed 6 m/s. For children the rate and speed should be lower. After irrigating, tip the head to allow the water to drain. Irrigation may need to be repeated several times. If the water stream hurts then the flow should be slower. It is better to irrigate too gently for a long period than irrigate too forcefully attempting to remove wax quickly. This procedure can be done at home in the shower using a self-use ear irrigation syringe with a right angle tip. After the wax is removed, the ear can be dried tipping the head then gently pulling the ear upwards to straighten the ear canel. If this does not remove enough water, the ear can be dried with a hair dryer set on low.
While the removal of cerumen is a commonplace procedure, it is not without risk. Irrigation can be performed at home with proper equipment as long as the person is careful not to irrigate too hard. All other methods should be carried out by individuals who have been sufficiently educated and trained in the procedure.
One should not use cotton swabs (Q-Tips) as these will likely push the wax further down the ear canal and, if used carelessly, perforate the eardrum or worse. Cotton swabs should be used only to clean the external ear.
References
- Alberti, P.W.R.M. (1964). Epithelial migration on the tympanic membrane. J.Laryngol.Otol. 78, 808-830.
- Alvord, L.S., Farmer, B.L. (1997). Anatomy and Orientation of the Human External Ear. J.Am.Acad.Audiol. 8, 383-390.
- Bass, E.J., Jackson, J.F. (1977). Cerumen types in Eskimos. Am.J.Phys.Anthropol. 47, 209-210.
- Bortz, J.T., Wertz, P.W., Downing, D.T. (1990). Composition of cerumen lipids. J.Am.Acad.Dermatol. 23, 845-849.
- Creed, E., Negus, V.E. (1926). Investigations regarding the function of aural cerumen. J.Laryngol.Otol 41, 223-230.
- Harvey, D.J. (1989). Identification of long-chain fatty acids and alcohols from human cerumen by the use of picolinyl and nicotinate esters. Biomed.Environ.Mass.Spectrom. 18, 719-723.
- Medline Plus Medical Encyclopedia: Wax Blockage. http://www.nlm.nih.gov/medlineplus/ency/article/000979.htm
- Megarry, S., Pett, A., Scarlett, A., Teh, W., Zeigler, E., Canter, R.J. (1988). The activity against yeasts of human cerumen. J.Laryngol.Otol. 102, 671-672.
- Oliveira, R.J. (1997). The active earcanal. J Am Acad Audiol. 8, 401-10.
- Overfield, T. (1985). Biologic Variation in Health and Illness: Race, Age, and Sex Differences. Addison-Wesley Publishing, Menlo Park, CA, USA. ISBN 0201128101
- Perry, E.J., Nicholas, A.C. (1956). Studies on the growth of bacteria in the human ear canal. J.Invest.Dermatol. 27, 165-170.
- Roeser, R.J., Ballachanda, B.B. (1997). Physiology, Pathophysiology, and Anthropology/Epidemiology of Human Earcanal Secretions. J.Am.Acad.Audiol. 8, 391-400.
- Roland, P.S., Marple, B.F. (1997). Disorders of the External Auditory Canal. J.Am.Acad.Audiol. 8, 367-378.