Dirichlet convolution

In mathematics, the Dirichlet convolution is a binary operation defined for arithmetic functions; it is of importance in number theory. This was developed by Johann Peter Gustav Lejeune Dirichlet, a German mathematician.

If f and g are two arithmetic functions (i.e. functions from the positive integers to the complex numbers), one defines a new arithmetic function f * g, the Dirichlet convolution of f and g, by

<math>(f*g)(n) = \sum_{d|n} f(d)g(n/d) \,<math>

where the sum extends over all positive divisors d of n.

Some general properties of this operation include:

  • If both f and g are multiplicative, then so is f * g. (Note however that the convolution of two completely multiplicative functions need not be completely multiplicative.)
  • f * g = g * f (commutativity)
  • (f * g) * h = f * (g * h) (associativity)
  • f * (g + h) = f * g + f * h (distributivity)
  • f * ε = ε * f = f, where ε is the function defined by ε(n) = 1 if n = 1 and ε(n) = 0 if n > 1.
  • For each f for which f(1) ≠ 0 there exists a g such that f * g = ε. g is called the Dirchlet inverse of f.
  • In particular, every multiplicative f has a Dirichlet inverse g that is also multiplicative.

With addition and Dirichlet convolution, the set of arithmetic functions forms a commutative ring with multiplicative identity ε, the Dirichlet ring (note that it is not a field because some arithmetic functions do not have Dirichlet inverses). The units of this ring are the arithmetical functions f with f(1) ≠ 0.

Furthermore, the multiplicative functions with convolution form an abelian group with identity element ε. The article on multiplicative functions lists several convolution relations among important multiplicative functions.

If f is an arithmetic function, one defines its Dirichlet series generating function by

<math>

DG(f;s) = \sum_{n=1}^\infty \frac{f(n)}{n^s} <math>

for those complex arguments s for which the series converges (if there are any). The multiplication of Dirichlet series is compatible with Dirichlet convolution in the following sense:

<math>

DG(f;s) DG(g;s) = DG(f*g;s)\, <math>

for all s for which the left hand side exists. This is akin to the convolution theorem if one thinks of Dirichlet series as a Fourier transform.de:Zahlentheoretische Funktion ko:디리클레 합성곱 sv:Dirichletfaltning

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools