Curvature form

In differential geometry, the curvature form describes curvature of a connection on a principal bundle. It can be considered as an alternative or generalization of curvature tensor in Riemannian geometry.

Definition

Let G be a Lie group and <math>E\to B<math> be a principal G-bundle. Let us denote the Lie algebra of G by <math>g<math>. Let <math>\omega<math> denotes the connection form on E (which is a g-valued one-form on E).

Then the curvature form is the g-valued 2-form on E defined by

<math>\Omega=d\omega +{1\over 2}[\omega,\omega]=D\omega.<math>

Here <math>d<math> stands for exterior derivative, <math>[*,*]<math> is the Lie bracket and D denotes the exterior covariant derivative. More precisely,

<math>\Omega(X,Y)=d\omega(X,Y) +{1\over 2}[\omega(X),\omega(Y)]. <math>

If <math>E\to B<math> is a fiber bundle with structure group G one can repeat the same for the associated principal G-bundle.

If <math>E\to B<math> is a vector bundle then one can also think of <math>\omega<math> as about matrix of 1-forms then the above formula takes the following form:

<math>\Omega=d\omega +\omega\wedge \omega, <math>

where <math>\wedge<math> is the wedge product. More precisely, if <math>\omega^i_j<math> and <math>\Omega^i_j<math> denote components of <math>\omega<math> and <math>\Omega<math> correspondingly, (so each <math>\omega^i_j<math> is a usual 1-form and each <math>\Omega^i_j<math> is a usual 2-form) then

<math>\Omega^i_j=d\omega^i_j +\sum_k \omega^i_k\wedge\omega^k_j.<math>

For example, the tangent bundle of a Riemannian manifold we have <math>O(n)<math> as the structure group and <math>\Omega^{}_{}<math> is the 2-form with values in <math>o(n)<math> (which can be thought of as antisymmetric matrices, given an orthonormal basis). In this case the form <math>\Omega^{}_{}<math> is an alternative description of the curvature tensor, namely in the standard notation for curvature tensor we have

<math>R(X,Y)Z=\Omega^{}_{}(X\wedge Y)Z.<math>

Bianchi identities

The first Bianchi identity (for a connection with torsion on the frame bundle) takes the form

<math>D\Theta=\Omega\wedge\theta={1\over 2}[\Omega,\theta]<math>,

here D denotes the exterior covariant derivative and <math>\Theta<math> the torsion.

The second Bianchi identity holds for general bundle with connection and takes the form

<math>D\Omega=0.<math>

See also

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools