Cube root

In mathematics, the cube root (∛) of a number is a number which, when cubed (multiplied by itself and then multiplied by itself again), gives back the original number. For instance, the cube root of 8 is 2, because 2 × 2 × 2 = 8. This is written:

<math>\sqrt[3]{8} = 2<math>

Formally, the cube root of a real (or complex) number x is a real (correspondingly, complex) solution y to the equation:

y3 = x,

which leads to the equivalent notation for cube and other roots that

<math>y = x^{1\over3}<math>

The cube root operation is associative with exponentiation and distributive with multiplication and division, but not addition and subtraction.

A non-zero complex number has three cube roots. A real number has a unique real cube root, but when treated as a complex number it has two further cube roots, which are complex conjugates of each other.

For instance, the cube roots of unity (1) are

1, <math>-1 + \sqrt{3}i\over2<math> and <math>-1 - \sqrt{3}i\over2<math>.

If R is one cube root of any real or complex number, the other two cube roots can be found by multiplying R by the two complex cube roots of unity.

When treated purely as a real function of a real variable, we may define a real cube root for all real numbers by setting

<math>(-x)^{1\over3} = -x^{1\over3}.<math>

However for complex numbers we define instead the cube root to be

<math>x^{1\over3} = \exp({\ln{x}\over3})<math>

where ln(x) is the principal branch of the natural logarithm. If we write x as

<math>x = r \exp(i \theta)<math>

where r is a non-negative real number and θ lies in the range

<math>-\pi < \theta \le \pi<math>,

then the complex cube root is

<math>\sqrt[3]{x} = \sqrt[3]{r}\exp(i\theta/3).<math>

This means that in polar coordinates, we are taking the cube root of the radius and dividing the polar angle by three in order to define a cube root. Hence, for instance, ∛−8 will not be −2, but rather 1 + i√3.

See also

External links

pl:Pierwiastek sześcienny

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools