Connection (mathematics)

In differential geometry, a connection (also connexion) or covariant derivative is a way of specifying a derivative of a vector field along another vector field on a manifold. That is an application to tangent bundles; there are more general connections, used in differential geometry and other fields of mathematics to formulate intrinsic differential equations . Connection may refer to a connection on any vector bundle, or also a connection on a principal bundle.

Connections give rise to parallel transport along a curve on a manifold. A connection also leads to invariants of curvature (see also curvature tensor and curvature form), and the so-called torsion.

General concept

The general concept can be summarized as follows: given a fiber bundle <math>\eta:E\to B<math> the tangent space at any point of E has canonical "vertical" subspace, the subspace tangent to the fiber. The connection fixes a choice of "horizontal" subspace at each point of E so that the tangent space of E is a direct sum of vertical and horizontal subspaces. Usually more requirements are imposed on the choice of "horizontal" subspaces, but they depend on the type of the bundle.

Given a <math>B'\to B<math> the induced bundle has an induced connection. If <math>B'=I<math> is a segment then connection on B gives a trivialization on the induced bundle over I, i.e. a choice of smooth one-parameter family of isomorphisms between the fibers over I. This family is called parallel displacement along the curve <math>I\to B <math> and it gives an equivalent description of connection (which in case of Levi-Civita connection on a Riemannian manifold is called parallel transport).

There are many ways to describe connection, in one particular approach, a connection can be locally described as a matrix of 1-forms which is the multiplant of the difference between the covariant derivative and the ordinary partial derivative in a coordinate chart. That is, partial derivatives are not an intrinsic notion on a manifold: a connection 'fixes up' the concept and permits discussion in geometric terms.

Possible approaches

There are quite a number of possible approaches to the connection concept. They include the following:

The connections referred to above are linear or affine connections. There is also a concept of projective connection; the most commonly-met form of this is the Schwarzian derivative in complex analysis.

See also: Gauss-Manin connectiones:Conexión (Matemáticas)

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools