Characteristic polynomial

In linear algebra, one associates a polynomial to every square matrix, its characteristic polynomial or secular equation. This polynomial encodes several important properties of the matrix, most notably its eigenvalues, its determinant and its trace.

Contents [hide]

Motivation

Given a square matrix A, we want to find a polynomial whose roots are precisely the eigenvalues of A. For a diagonal matrix A, the characteristic polynomial is easy to define: if the diagonal entries are a, b, c the characteristic polynomial will be

(ta )(tb )(tc )...

up to a convention about sign (+ or -). This works because the diagonal entries are also the eigenvalues of this matrix.

For a general matrix A, one can proceed as follows. If λ is an eigenvalue of A, then there is an eigenvector v0 such that

A v = λv,

or

I - A )v = 0

(where I is the identity matrix). Since v is non-zero, this means that the matrix λI - A is singular, which in turn means that its determinant is 0. We have just shown that the roots of the function det(t I - A) are the eigenvalues of A. Since this function is a polynomial in t, we're done.

Formal definition

We start with a field K (you can think of K as the real or complex numbers) and an n×n matrix A over K. The characteristic polynomial of A, denoted by pA(t ), is the polynomial defined by

pA(t ) = det(t I - A )

where I denotes the n-by-n identity matrix. This is indeed a polynomial, since determinants are defined in terms of sums of products. (Some authors define the characteristic polynomial to be det(A - t I ); the difference is immaterial since the two polynomials differ at most by a sign.)

Example

Suppose we want to compute the characteristic polynomial of the matrix

<math>A=\begin{pmatrix}

2 & 1\\ -1& 0 \end{pmatrix}. <math> We have to compute the determinant of

<math>t I-A = \begin{pmatrix}

t-2&-1\\ 1&t \end{pmatrix} <math> and this determinant is

<math>(t-2)t - 1(-1) = t^2-2t+1.\,\!<math>

The latter is the characteristic polynomial of A.

Properties

The polynomial pA(t ) is monic (its leading coefficient is 1) and its degree is n. The most important fact about the characteristic polynomial was already mentioned in the motivational paragraph: the eigenvalues of A are precisely the roots of pA(t ). The constant coefficient pA(0) is equal to (-1)n times the determinant of A, and the coefficient of t n -1 is equal to the negative of the trace of A.

For a 2×2 matrix A, the characteristic polynomial is nicely expressed then as

t 2 - tr(A)t + det(A)

where tr(A) represents the matrix trace of A and det(A) the determinant of A.

The Cayley-Hamilton theorem states that replacing t by A in the expression for pA(t ) yields the zero matrix: pA(A ) = 0. Simply, every matrix satisfies its own characteristic equation. As a consequence of this, one can show that the minimal polynomial of A divides the characteristic polynomial of A.

Two similar matrices have the same characteristic polynomial. The converse however is not true in general: two matrices with the same characteristic polynomial need not be similar.

The matrix A and its transpose have the same characteristic polynomial. A is similar to a triangular matrix if and only if its characteristic polynomial can be completely factored into linear factors over K. In fact, A is even similar to a matrix in Jordan normal form in this case.de:Charakteristisches Polynom

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools