Cochran's theorem

In statistics, Cochran's theorem is used in the analysis of variance.

Suppose U1, ..., Un are independent standard normally distributed random variables, and an identity of the form

<math>

\sum_{i=1}^n U_i^2=Q_1+\cdots + Q_k <math>

can be written where each Qi is a sum of squares of linear combinations of the Us. Then if

<math>

r_i+\cdots +r_k=n <math>

where ri is the rank of Qi, Cochran's theorem states that the Qi are independent, and Qi has a chi-square distribution with ri degrees of freedom.

Cochran's theorem is the converse of Fisher's theorem.

Example

If X1, ..., Xn are independent normally distributed random variables with mean μ and standard deviation σ then

<math>U_i=(X_i-\mu)/\sigma<math>

is standard normal for each i.

It is possible to write

<math>

\sum U_i^2=\sum\left(\frac{X_i-\overline{X}}{\sigma}\right)^2 + n\left(\frac{\overline{X}-\mu}{\sigma}\right)^2 <math>

(here, summation is from 1 to n, that is over the observations). To see this identity, multiply throughout by <math>\sigma<math> and note that

<math>

\sum(X_i-\mu)^2= \sum(X_i-\overline{X}+\overline{X}-\mu)^2 <math>

and expand to give

<math>

\sum(X_i-\overline{X})^2+\sum(\overline{X}-\mu)^2+ 2\sum(X_i-\overline{X})(\overline{X}-\mu). <math>

The third term is zero because it is equal to a constant times

<math>\sum(\overline{X}-X_i),<math>

and the second term is just n identical terms added together.

Combining the above results (and dividing by σ2), we have:

<math>

\sum\left(\frac{X_i-\mu}{\sigma}\right)^2= \sum\left(\frac{X_i-\overline{X}}{\sigma}\right)^2 +n\left(\frac{\overline{X}-\mu}{\sigma}\right)^2 =Q_1+Q_2. <math>

Now the rank of Q2 is just 1 (it is the square of just one linear combination of the standard normal variables). The rank of Q1 can be shown to be n − 1, and thus the conditions for Cochran's theorem are met.

Cochran's theorem then states that Q1 and Q2 are independent, with Chi-squared distribution with n − 1 and 1 degree of freedom respectively.

This shows that the sample mean and sample variance are independent; also

<math>

(\overline{X}-\mu)^2\sim \frac{\sigma^2}{n}\chi^2_1. <math> To estimate the variance σ2, one estimator that is often used is

<math>

\hat{\sigma^2}= \frac{1}{n}\sum\left( X_i-\overline{X}\right)^2 <math>.

Cochran's theorem shows that

<math>

\hat{\sigma^2}\sim \frac{\sigma^2}{n}\chi^2_{n-1} <math>

which shows that the expected value of <math>\hat{\sigma}^2<math> is σ2n/(n − 1).

Both these distributions are proportional to the true but unknown variance σ2; thus their ratio is independent of σ2 and because they are independent we have

<math>

\frac{\left(\overline{X}-\mu\right)^2} {\frac{1}{n}\sum\left(X_i-\overline{X}\right)^2}\sim F_{1,n} <math>

where F1,n is the F-distribution with 1 and n degrees of freedom (see also Student's t-distribution).pl:twierdzenie Cochrana it:Teorema di Cochran

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools