Tractrix

Template:Technical

A tractrix is a curve of pursuit in which the leader travels in a constant direction and the follower maintains a constant distance.

With one unit between leader and follower, the leader on the x-axis, and the follower starting at (0,1), the tractrix is

<math>x={\rm sech}^{-1}(y)-\sqrt{1-y^2}<math>

The evolute of a tractrix is a catenary.

Derivation

Suppose the leader to be at (t,0) and φ to be the angle of the leash to the horizontal. Then the follower is at

1: <math>(x,\, y) = (t-\cos\,(\phi),\, \sin\,(\phi)) \ <math>

and because the follower faces the leader

2: <math>{dy \over dx}=-\tan\,(\phi) \ <math>

But, taking the differential of 1,

<math>(dx,\, dy)=(dt+\sin(\phi)\,d\phi,\ \cos(\phi)\, d\phi) \ <math>

so by 2

<math>{\cos(\phi)\, d\phi \over dt+\sin(\phi)\, d\phi}=-\tan(\phi) \ <math>
<math> dt + \sin \phi \, d\phi = -{\cos \phi \, d\phi \over \tan \phi} <math>
<math> dt = -\left( \sin \phi + {\cos^2 \phi \over \sin \phi} \right) d\phi <math>
<math> {dt \over d\phi} = -{\sin^2 \phi + \cos^2 \phi \over \sin \phi} <math>
<math>{dt\over d\phi}=-\csc(\phi)<math>
<math> t = \int -\csc \phi \, d\phi = -\ln | \csc \phi - \cot \phi | \ <math>
<math> e^{-t} = \csc \phi - \cot \phi = \tan\left( {\phi \over 2} \right) <math> (due to a half-angle formula)
<math>\phi=2\arctan(e^{-t}) = -{\rm gd}(t) + {\pi \over 2} \ <math>

where gd is the Gudermannian function.

Having found φ, now find cos φ and sin φ:

<math> \cos \phi = \cos \left( -{\rm gd}(t) + {\pi \over 2} \right) <math>
<math> = \cos(-{\rm gd}(t)) \cos {\pi \over 2} - \sin (-{\rm gd}(t)) \sin {\pi \over 2} = - \sin (-{\rm gd}(t)) <math>
<math> = \tanh (t) \ <math>
<math> \sin \phi = \sin \left( -{\rm gd}(t) + {\pi \over 2} \right) <math>
<math> = \sin(-{\rm gd}(t)) \cos {\pi \over 2} + \cos (-{\rm gd}(t)) \sin {\pi \over 2} = \cos({\rm gd}(t)) <math>
<math> = {\rm sech} (t) \ <math>

Putting these results back into 1 gives a parametric form

<math>(x,\,y)=(t-\tanh(t),\,{\rm sech}(t))\ <math>

which immediately gives the form at top.

The arc length

<math>s=\int\sqrt{(dx)^2+(dy)^2}=\int|\tanh(t)|\,dt=\sgn(t)\ln(\cosh(t))<math>

gives a natural parametrization

<math>(x,y)=({\sgn}(s)({\rm arccosh}(e^{|s|})-\sqrt{1-e^{-2|s|}}),e^{-|s|})<math>

See also

External links

Template:Math-stub An illustration would be really nice.zh:曳物线

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools