Semitonium

In harmony, the semitonium is the ratio 17:16 — or 18:17 — between a pair of frequencies or, equivalently, the ratio 16:17 — or 17:18 — between a pair of wavelengths (or lengths of a monochord). It is the mean between unison and ditono.

The arithmetic mean between unison and ditono is

<math> {1:1 + 9:8 \over 2} = {8:8 + 9:8 \over 2} = {17:8 \over 2} = 17:16, <math>

which is equal to 1.0001 in binary, or 1 + 2−4.

The harmonic mean between unison and ditono is

<math> {2 \over {1 \over 1:1} + {1 \over 9:8}} = {2 \over 1:1 + 8:9} = {2 \over 9:9 + 8:9} = {2 \over 17:9} = {2 \cdot 9 \over 17} = 18:17 , <math>

which is equal to 1.0000111100001111000011110000111100001111... in binary.

The ratio 18:17 is the inversion of the eptadem maius (major seventh) (17:9), viz.

<math> {2 \over 17:9} = {2 \cdot 9 \over 17} = 18:17 . <math>

In Pythagorean tuning, the semitonium is equal to the ratio 256:243 (which is specifically called limma), i.e.

<math> {2^8 \over 3^5} = {256 \over 243} <math>.

The Pythagorean diatonic scale has five toni, each of ratio 9:8, and two semitonia, each of ratio 256:243. Multiplying all of these together yields

<math> \left( {9 \over 8} \right)^5 \times \left( {256 \over 243} \right)^2 = {3^{2 \times 5} \times 2^{8 \times 2} \over 2^{3 \times 5} \times 3^{5 \times 2}} = {2^{16} \over 2^{15}} = 2 <math>

which is diapason exactly.

The semitonium is also called minor second, or semitone.

A tone is equal to a pair of semitones. That is, a tonus can be composed by joining together a pair of semitonia:

<math> {18 \over 17} \times {17 \over 16} = {18 \over 16} = 9:8 <math>,

but notice that the semitonia are slightly unequal.

Of the two ratios given above for the semitonium, the ratio 18:17 is closer to the minor second of equal temperament. The reason is that, given that an octave should equal twelve semitones, then both
(17/16)12 and (18/17)12 should be close to 2, but (18/17)12 is closer:

<math> \left( {18 \over 17} \right)^{12} = 1.98555995207 <math>
<math> \left( {17 \over 16} \right)^{12} = 2.06988999178 <math>
<math> {2 \over (18/17)^{12}} = 1.00727253182 <math>
<math> {(17/16)^{12} \over 2} = 1.03494499589, <math>

and 1.00727 < 1.03494, so that the ratio 18:17 better approximates the ideal semitone.

It is possible to combine 18:17 and 17:16, so that there are ten 18:17 semitones and two 17:16 semitones:

<math> \left( {18 \over 17} \right)^{10} \times \left( {17 \over 16} \right)^2 = 1.9993725014 <math>

which is extremely close to perfect diapason: the result is equal to 1199.4567 cents, less than one cent from a perfect octave. Also,

<math> {18 \over 17} < 2^{1/12} < {17 \over 16} <math>

where 21/12 is exactly 100 cents: the semitone of equal temperament.


See also: unison, diapason, diapente, diatessaron, ditonus, semiditonus, tonus.

External link

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools