Selection bias
|
Selection bias is the error of distorting a statistical analysis by pre- or post-selecting the samples. Typically this causes measures of statistical significance to appear much stronger than they are, but it is also possible to cause completely illusory artifacts. Selection bias can be the result of scientific fraud which manipulate data directly, but more often is either unconscious or due to biases in the instruments used for observation. For example, astronomical observations will typically find more blue galaxies than red ones simply because most instruments are more sensitive to blue light than red light.
There are many types of possible selection bias, including:
Spatial:
- Selecting end-points of a series. For example, to maximise a claimed trend, you could start the time series at an unusually low year, and end on a high one.
- Early termination of a trial at a time when its results support a desired conclusion.
- A trial may be terminated early at an extreme value (often for ethical reasons), but the extreme value is likely to be reached by the variable with the largest variance, even if all variables have a similar mean. As a result of that early termination, therefore, the means of variables with larger variances are overestimated.
- Partitioning data with knowledge of the contents of the partitions, and then analyzing them with tests designed for blindly chosen partitions (see stratified sampling, cluster sampling, Texas sharpshooter fallacy).
- Analyzing the lengths of intervals by selecting intervals that occupy randomly chosen points in time or space, a process that favors longer intervals.
Data:
- Rejection of "bad" data on arbitrary grounds, instead of according to previously stated or generally agreed criteria
Participants:
- Pre-screening of trial participants, or advertising for volunteers within particular groups. For example to "prove" that smoking doesn't affect fitness, advertise for both at the local fitness centre, but advertise for smokers during the advanced aerobics class, and for non-smokers during the weight loss sessions.
- Discounting trial subjects/tests that did not run to completion. For example, in a test of a dieting program, the researcher may simply reject everyone who drops out of the trial. But most of those who drop out are those for whom it wasn't working.
- Self-selection bias, which is possible whenever the group of people being studied has any form of control over whether to participate. Participants' decision to participate may be correlated with traits that affect the study, making the participants a non-representative sample. For example, people with strong opinions or substantial knowledge may be more willing to spend time answering a survey than those who don't.
Studies:
- Selection of which studies to include in a meta-analysis
- Performing repeated experiments and reporting only the most favourable results. (Perhaps relabelling lab records of other experiments as "calibration tests", "instrumentation errors" or "preliminary surveys".)
- Presenting the most significant result of a data dredge as if it were a single experiment. (Which is logically the same as the previous item, but curiously is seen as much less dishonest.)
Selection bias is closely related to:
- sample bias, a selection bias produced by an accidental bias in the sampling technique, as against deliberate or unconscious manipulation.
- publication bias or reporting bias, the distortion produced in community perception or meta-analyses by not publishing uninteresting (usually negative) results, or results which go against the experimenter's prejudices, a sponsor's interests, or community expectations.
- confirmation bias, the distortion produced by experiments that are designed to seek confirmatory evidence instead of trying to disprove the hypothesis.