Primitive root modulo n

A primitive root modulo n is a concept from modular arithmetic in number theory.

If n≥1 is an integer, the numbers coprime to n, taken modulo n, form a group with multiplication as operation; it is written as (Z/nZ)× or Zn*. This group is cyclic if and only if n is equal to 1 or 2 or 4 or pk or 2 pk for an odd prime number p and k ≥ 1. A generator of this cyclic group is called a primitive root modulo n, or a primitive element of Zn*.

A primitive root modulo n, in other words, is an integer g such that, modulo n, every integer not having a common factor with n is congruent to a power of g.

Take for example n = 14. The elements of

(Z/14Z)×

are the congruence classes of

1, 3, 5, 9, 11 and 13.

Then 3 is a primitive root modulo 14, as we have 32 = 9, 33 = 13, 34 = 11, 35 = 5 and 36 = 1 (modulo 14). The only other primitive root modulo 14 is 5.

Here is a table containing the smallest primitive root for various values of n Template:OEIS:

n 2 3 4 5 6 7 8 9 10 11 12 13 14
primitive root mod n 1 2 3 2 5 3 - 2 3 2 - 2 3

No simple general formula to compute primitive roots modulo n is known. There are however methods to locate a primitive root that are faster than simply trying out all candidates. If the multiplicative order of a number m modulo n is equal to φ(n) (the order of Z/nZ), then it is a primitive root. We can use this to test for primitive roots:

first compute φ(n). Then determine the different prime factors of φ(n), say p1,...,pk. Now, for every element m of (Z/nZ)×, compute
<math>m^{\phi(n)/p_i}\mod n \qquad\mbox{ for } i=1,\ldots,k<math>

using the fast exponentiating by squaring. As soon as you find a number m for which these k results are all different from 1, you stop: m is a primitive root.

The number of primitive roots modulo n, if there are any, is equal to

φ(φ(n))

since, in general, a cyclic group with r elements has φ(r) generators.

Sometimes one is interested in small primitive roots. We have the following results. For every ε>0 there exist positive constants C and p0 such that, for every prime pp0, there exists a primitive root modulo p that is less than

C p1/4+ε.

If the generalized Riemann hypothesis is true, then for every prime number p, there exists a primitive root modulo p that is less than

70 (ln(p))2.

See also: Artin conjecture.de:Primitivwurzel

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools