In the theory of Lie algebras, the Poincaré-Birkhoff-Witt theorem is a fundamental result characterizing the universal enveloping algebra of a Lie algebra.

Recall that any vector space V over a field has a Hamel basis; this is a set S such that any element of V is a unique (finite) linear combination of elements of S. In the formulation of Poincaré-Birkhoff-Witt theorem we consider bases which are totally ordered by some relation which we denote ≤.

If L is a Lie algebra over a field K, then by definition, there is a canonical K-linear map h from L into the universal enveloping algebra U(L). This algebra is a unital associative K-algebra.

Theorem. Let L be a Lie algebra over K and X a totally ordered Hamel basis for L. A canonical monomial over X is a finite sequence (x1, x2 ..., xn) of elements of X which is non-decreasing in the order ≤, that is, x1x2 ≤ ... ≤ xn. Extend h to all canonical monomials as follows: If (x1, x2, ..., xn) is a canonical monomial, let

<math> h(x_1, x_2, \ldots, x_n) = h(x_1) \cdot h(x_2) \cdots h(x_n). <math>

Then h is injective and its range is a Hamel basis for the K-vector space U(L).

Stated somewhat differently, consider Y = h(X). Y is totally ordered by the induced ordering from X. The set of monomials

<math> y_1^{k_1} y_2^{k_2} \cdots y_\ell^{k_\ell} <math>

where y1 <y2 < ... < yn are elements of Y, and the exponents are positive, together with the multiplicative unit 1, form a Hamel basis for U(L). Note that the unit element 1 corresponds to the null canonical monomial.

Note that the monomials in Y form a basis as a vector space. The multiplicative structure of U(L) is determined by the structure constants of the Lie algebra; that is the coefficients cu,v,x such that

<math> [u,v] = \sum_{x \in X} c_{u,v,x}\; x <math>

The Poincaré-Birkhoff-Witt theorem can be interpreted as saying that the product of canonical monomials in Y can be reduced uniquely to a linear combination of canonical monomials by repeatedly using the structure equations. Part of this is clear: the structure constants determine uv - vu, i.e. what to do in order to change the order of two elements of X in a product. This fact, modulo an inductive argument on the degree of sums of monomials, shows one can always achieve products where the factors are ordered in a non-decreasing fashion.

Corollary. If L is a Lie algebra over a field, the canonical map LU(L) is injective. In particular, any Lie algebra over a field is isomorphic to a Lie subalgebra of an associative algebra.

References

  • G. Hochschild, The Theory of Lie Groups, Holden-Day, 1965.
Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools