Non-linear control

Non-linear control is a sub-division of control engineering which deals with the control of non-linear systems. Non-linear systems are those systems whose input-output behaviour is very much unpredictable. For linear systems, we have a lot of well-established control techniques like root-locus, Bode plot, Nyquist criterion, state-feedback, pole-placement etc.

Contents

Properties of non-linear systems

  • They do not follow the principle of superposition (linearity and homogeneity).
  • They may have multiple isolated equilibrium points.
  • They exhibit properties like limit-cycle, bifurcation, chaos.
  • For a sinusoidal input, the output signal may contain many harmonics and sub-harmonics with various amplitudes and phase differences. While for a linear system, we know that for u= A sin(ωt), output y = B sin(ωt+ φ).

Analysis and control of non-linear systems

The Lur'e problem

In this section, we will study the stability of an important class of control systems namely feedback systems whose forward path contains a linear time-invariant subsystem and whose feedback path contains a memory-less and possibly time-varying non-linearity. This class of problem is named for A. I. Lur'e.

Lure Problem Block Diagram

The linear part is characterized by four matrices (A,B,C,D). The non-linear part is Φ ∈ [a,b], a<b, is a sector non-linearity.

Absolute stability problem

Given that

  1. (A,B) is controllable and (C,A) is observable
  2. two real numbers a,b with a<b.

The problem is to derive conditions involving only the transfer matrix H(.) and the numbers a,b, such that x=0 is a globally uniformly asymptotically stable equilibrium of the system (1)-(3) for every function Φ ∈ [a,b]. This is also known as Lure's problem.

We will discuss two main theorems concerning Lure's problem.

  • The Circle criterion
  • The Popov criterion.

Popov criterion

The class of systems studied by Popov is described by

<math>

\begin{matrix} \dot{x}&=&Ax+bu \\ \dot{\xi}&=&u \\ y&=&cx+d\xi \quad (1) \end{matrix} <math>

<math> u = -\phi (y) \quad (2) <math>

where x ∈ Rn, ξ,u,y are scalars and A,b,c,d have commensurate dimensions. The non-linear element Φ: R → R is a time-invariant nonlinearity belonging to open sector (0, ∞). This means that

Φ(0) = 0, y Φ(y) > 0, ∀ y ≠ 0; (3)

The transfer function from u to y is given by

<math> h(s) = \frac{d}{s} + c(sI-A)^{-1}b \quad \quad (4)<math>

Things to be noted

  • Popov criterion is applicable only to autonomous systems.
  • The system studied by Popov has a pole at the origin and there is no throughput from input to output.
  • Non-linearity Φ belongs to a open sector.

Theorem: Consider the system (1) and (2) and suppose

  1. A is Hurwitz
  2. (A,b) is controllable
  3. (A,c) is observable
  4. d>0 and
  5. Φ ∈ (0,∞)

then the above system is globally asymptotically stable if there exists a number r>0 such that
infω ∈ R Re[(1+jωr)h(jω)] > 0

References

  • A. I. Lur'e and V. N. Postnikov, "On the theory of stability of control systems," Applied mathematics and mechanics, 8(3), 1944, (in Russian).
  • M. Vidyasagar, Nonlinear Systems Analysis, second edition, Prentice Hall, Englewood Cliffs, New Jersey 07632.

See also

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools