Newton-Cotes formulas

In numerical analysis, the Newton-Cotes formulas, also called the Newton-Cotes rules, are a group of formulas for numerical integration (also called quadrature). They are named after Isaac Newton and Roger Cotes.

It is assumed that the value of a function f is known at equally spaced points xi, for i = 0, ..., n. (If the evaluation points are not assumed to be equally spaced, another class of formulas, called Gaussian quadrature formulas, can be derived.) There are two types of Newton-Cotes formulas, the "closed" type which uses the function value at all points, and the "open" type which does not use the function values at the end points. The closed Newton-Cotes formula of degree n is stated as

<math>\int_a^b f(x) \,dx \approx \sum_{i=0}^n w_i\, f(x_i)<math>

where xi = h i + x0, with h (called the step size) equal to (xn - x0)/n. The <math>w_i<math> are called weights.

As can be seen in the following derivation the weights are derived from the Langrange basis polynomials. This means they depend only on the xi and not on the function f. L(x) is the interpolation polynomial in the Lagrange form for the given data points (x0, f(x0) ),..,(xn, f(xn) )

<math>\int_a^b f(x) \,dx \approx \int_a^b L(x)\,dx = \int_a^b \sum_{i=0}^n f(x_i)\, l_i(x)\, dx <math>
<math>=\sum_{i=0}^n \int_{x_{i-1}}^{x_i} f(x_i)\, l_i(x)\, dx =

\sum_{i=0}^n f(x_i) \underbrace{\int_{x_{i-1}}^{x_i} l_i(x)\, dx}_{w_i}<math>

The open Newton-Cotes formula of degree n is stated as

<math>\int_a^b f(x)\, dx \approx \sum_{i=1}^{n-1} w_i\, f(x_i)<math>

The weights are found in a manner similar to the closed formula.

A Newton-Cotes formula of any degree can be constructed. Some of the formulas of low degree are known by conventional names. This table lists some of the Newton-Cotes formulas of the closed type. The notation <math>f_i<math> is a shorthand for <math>f(x_i)<math>.

Degree Common name Formula Error term
1 Trapezoid rule <math> \frac{h}{2} (f_0 + f_1) <math> <math>-\frac{h^3}{12}\,f^{(2)}(\xi)<math>
2 Simpson's rule <math> \frac{h}{3} (f_0 + 4 f_1 + f_2) <math> <math>-\frac{h^5}{90}\,f^{(4)}(\xi)<math>
3 3/8 rule <math> \frac{3\, h}{8} (f_0 + 3 f_1 + 3 f_2 + f_3) <math> <math>-\frac{3\, h^5}{80}\,f^{(4)}(\xi)<math>
4 Boole's rule <math> \frac{2\, h}{45} (7 f_0 + 32 f_1 + 12 f_2 + 32 f_3 + 7 f_4) <math> <math>-\frac{8\, h^7}{945}\,f^{(6)}(\xi)<math>

The exponent of the step size h in the error term shows the rate at which the approximation error decreases. The derivative of f in the error term shows which polynomials can be integrated exactly (i.e., with error equal to zero). Note that the derivative of f in the error term increases by 2 for every other rule. The number <math>\xi<math> is between a and b.

This table lists some of the Newton-Cotes formulas of the open type.

Degree Common name Formula Error term
0 Rectangle rule <math>2 h f_1 <math> <math>\frac{h^3}{24}\,f^{(2)}(\xi)<math>
1 <math> \frac{3\, h}{2} (f_1 + f_2) <math> <math> \frac{h^3}{4}\,f^{(2)}(\xi) <math>
2 <math> \frac{4 \,h}{3} (2 f_1 - f_2 + 2 f_3) <math> <math> \frac{28\, h^5}{90}\,f^{(4)}(\xi) <math>
3 <math> \frac{5 \,h}{24} (11 f_1 + f_2 + f_3 + 11 f_4) <math> <math> \frac{95\, h^5}{144}\,f^{(4)}(\xi) <math>

Notice that for the Newton-Cotes rules to be accurate, the step size h needs to be small, which means that the interval of integration <math>[a, b]<math> must be small itself, which is not true most of the time. For this reason, one usually performs numerical integration by splitting <math>[a, b]<math> into smaller subintervals, applying a Newton-Cotes rule on each subinterval, and adding up the results. This is called a composite rule, see Numerical integration.

References

  • M. Abramowitz and I. A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972. (See Section 25.4.)
  • George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler. Computer Methods for Mathematical Computations. Englewood Cliffs, NJ: Prentice-Hall, 1977. (See Section 5.1.)
  • William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling. Numerical Recipes in C. Cambridge, UK: Cambridge University Press, 1988. (See Section 4.1.)
  • Josef Stoer and Roland Bulirsch. Introduction to Numerical Analysis. New York: Springer-Verlag, 1980. (See Section 3.1.)

External links

fr:Formules de Newton-Cotes

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools