Linear elasticity

Contents

Linear elasticity

The linear theory of elasticity models the macroscopic mechanical properties of solids assuming "small" deformations.

Basic equations

Linear elastodynamics is based on three tensor equations:

  • dynamic equation

<math> \partial_j T_{ij} + f_i =\rho \, \partial_{tt} u_i <math>

<math> T_{ij} = C_{ijkl} \, E_{kl} <math>

  • kinematic equation

<math> E_{ij} =\frac{1}{2} (\partial_i u_j+\partial_j u_i) <math>

where:

  • <math> T_{ij}=T_{ji} <math> is stress
  • <math> f_i <math> is body force
  • <math> \rho <math> is density
  • <math> u_i <math> is displacement
  • <math> C_{ijkl}=C_{klij}=C_{jikl}=C_{ijlk} <math> is the stiffness tensor
  • <math> E_{ij}=E_{ji} <math> is strain

Wave equation

From the basic equations one gets the wave equation

<math> (\delta_{kl} \partial_{tt}-A_{kl}[\nabla]) \, u_l

= \frac{1}{\rho} f_k <math> where

<math> A_{kl}[\nabla]=\frac{1}{\rho} \, \partial_i \, C_{iklj} \, \partial_j <math>

is the acoustic differential operator, and <math> \delta_{kl}<math> is Kronecker delta.

Plane waves

A plane wave has the form

<math> \mathbf{u}[\mathbf{x}, \, t] = U[\mathbf{k} \cdot \mathbf{x} - \omega \, t] \, \hat{\mathbf{u}} <math>

with <math>\hat{\mathbf{u}}<math> of unit length. It is a solution of the wave equation with zero forcing, if and only if <math> \omega^2 <math> and <math>\hat{\mathbf{u}}<math> constitute an eigenvalue/eigenvector pair of the acoustic algebraic operator

<math> A_{kl}[\mathbf{k}]=\frac{1}{\rho} \, k_i \, C_{iklj} \, k_j <math>

This propagation condition may be written as

<math>A[\hat{\mathbf{k}}] \, \hat{\mathbf{u}}=c^2 \, \hat{\mathbf{u}}<math>

where <math>\hat{\mathbf{k}} = \mathbf{k} / \sqrt{\mathbf{k}\cdot\mathbf{k}}<math> denotes propagation direction and <math>c=\omega/\sqrt{\mathbf{k}\cdot\mathbf{k}}<math> is phase velocity.

Isotropic media

In isotropic media, the elasticity tensor has the form

<math> C_{ijkl}

= \kappa \, \delta_{ij}\, \delta_{kl} +\mu\, (\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}-\frac{2}{3}\, \delta_{ij}\,\delta_{kl})<math> where <math>\kappa<math> is incompressibility, and <math>\mu<math> is rigidity. Hence the acoustic algebraic operator becomes

<math>A[\hat{\mathbf{k}}]=

\alpha^2 \,\hat{\mathbf{k}}\otimes\hat{\mathbf{k}} +\beta^2 \, (\mathbf{I}-\hat{\mathbf{k}}\otimes\hat{\mathbf{k}} ) <math> where <math> \otimes <math> denotes the tensor product, <math> \mathbf{I} <math> is the identity matrix, and

<math> \alpha^2=(\kappa+\frac{4}{3}\mu)/\rho

\qquad \beta^2=\mu/\rho <math> are the eigenvalues of <math>A[\hat{\mathbf{k}}]<math> with eigenvectors <math>\hat{\mathbf{u}}<math> parallel and orthogonal to the propagation direction <math>\hat{\mathbf{k}}<math>, respectively. In the seismological literature, the corresponding plane waves are called P-waves and S-waves (see Seismic wave).

References

  • Gurtin M. E., Introduction to Continuum Mechanics, Academic Press 1981
  • L. D. Landau & E. M. Lifschitz, Theory of Elasticity, Butterworth 1986
Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools