Laplace transform applied to differential equations

The use of Laplace transform makes it much easier to solve linear differential equations with given initial conditions.

First consider the following relations:

<math>\mathcal{L}\{f'\}
 = s \mathcal{L}\{f\} - f(0)<math>
<math>\mathcal{L}\{f''\}
 = s^2 \mathcal{L}\{f\} - s f(0) - f'(0)<math>
<math>\mathcal{L}\{f^{(n)}\}
 = s^n \mathcal{L}\{f\} - \Sigma_{i = 1}^{n}s^{n - i}f^{(i - 1)}(0)<math>

Suppose we want to solve the given differential equation:

<math>\sum^n_{i=0}a_if^{(i)}(t)=\phi(t)<math>

This equation is equivalent to

<math>\sum^n_{i=0}a_i\mathcal{L}\{f^{(i)}(t)\}=\mathcal{L}\{\phi(t)\}<math>

which is equivalent to

<math>\mathcal{L}\{f(t)\}={\mathcal{L}\{\phi(t)\}+\sum^n_{i=0}a_i\sum^i_{j=0}s^{i-j}f^{(j-i)}(0) \over \sum^n_{i=0}a_is^i}<math>

note that the <math>f^{(k)}(0)<math> are initial conditions.

Then all we need to get f(t) is to apply the Laplace inverse transform to <math>\mathcal{L}\{f(t)\}<math>

An example

We want to solve :

<math>f^{(2)}(t)+4f(t)=\sin(2t) \,\!<math>

with initial conditions f(0) = 0 and f ′(0)=0

we note :

<math>\phi(t)=\sin(2t) \,\!<math>

and we get :

<math>\mathcal{L}\{\phi(t)\}=\frac{2}{s^2+4}<math>

so this is equivalent to :

<math>s^2\mathcal{L}\{f(t)\}-sf(0)-f^{(1)}(0)+4\mathcal{L}\{f(t)\}=\mathcal{L}\{\phi(t)\}<math>

we deduce :

<math>\mathcal{L}\{f(t)\}=\frac{2}{(s^2+4)^2}<math>

So we apply the Laplace inverse transform and get

<math>f(t)=\frac{1}{8}\sin(2t)-\frac{t}{4}\cos(2t) <math>

Bibliography

  • A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, 2002.

fr:Application de la transformée de Laplace aux équations différentielles

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools