Koszul complex

In mathematics, the Koszul complex was first introduced to define a cohomology theory for Lie algebras, by Jean-Louis Koszul. It turned out to be a useful general construction in homological algebra.

In commutative algebra, if x is an element of the ring R, multiplication by x is R-linear and so represents an R-module homomorphism from R to itself, usually denoted R →x R. It is useful to throw in zeroes on each end and make this a (free) R-complex:

0 → R →xR → 0.

Call this complex K(x).

Counting the right-hand copy of R as the zeroth slot and the left-hand copy as the first slot, this complex neatly captures the most important facts about multiplication by x because its zeroth homology is exactly the homomorphic image of R modulo the multiples of x, H0(K(x)) = R/xR, and its first homology is exactly the annihilator of x, H0(K(x)) = AnnR(x).

This complex K(x) is the Koszul complex of R with respect to x.

Now if x1, x2, ..., xn are elements of R, the Koszul complex of R with respect to x1, x2, ..., xn, usually denoted K(x1, x2, ..., xn), is the tensor product in the category of R-complexes of the Koszul complexes defined above individually for each i.

The Koszul complex is a free complex. There are exactly (n choose j) copies of the ring R in the jth slot in the complex (0 ≤ j ≤ n). The matrices involved in the maps can be written down precisely. Letting <math>e_{i_1...i_n}<math> denote a free-basis generator in <math>K_p, d:K_p \to K_{p-1}<math> is defined by:

<math> d(e_{i_1...i_n}) := \sum _{j=1}^{p}(-1)^{j-1}x_{i_j}e_{i_1...\hat{i_j}...i_n}. <math>

For the case of two elements x and y, the Koszul complex can then be written down quite succinctly as 0 → R →φR2ψR →0, with the matrices φ and ψ given by <math>\begin{bmatrix} -y & x\\ \end{bmatrix} <math> and <math>\begin{bmatrix} x\\ y\\ \end{bmatrix} <math> respectively. The cycles in slot 1 are then exactly the linear relations on the elements x and y while the boundaries are the trivial relations. The first Koszul homology H1(K(x,y)) therefore measures exactly the relations mod the trivial relations. With more elements the higher-dimensional Koszul homologies measure the higher level versions of this.

In the case that the elements x1, x2, ..., xn form a regular sequence, the higher homology modules of the Koszul complex are all zero, so K(x1, x2, ..., xn) forms a free resolution of the R-module R/(x1, xn, ..., xn)R.

Example

If k is a field and X1, X2, ...,Xd are indeterminates and R is the polynomial ring k[X1, X2, ...,Xd], the Koszul complex on the Xi 's K(Xi) forms a concrete free R-resolution of k.

Theorem

If (R,m) is local and M is a finitely-generated R-module with x1, x2, ...,xn in m, then the following are equivalent:
1) The (xi) form an M-sequence,
2) H1(K(xi)) = 0,
3) Hj(K(xi)) = 0 for all j ≥ 1.

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools