Jacobi field

In Riemannian geometry, a Jacobi field is a certain type of vector field along a geodesic <math>\gamma<math> in a Riemannian manifold. Jacobi fields are one of the basic objects of study in Riemannian geometry; for the origin of the name, see Carl Jacobi.

Contents

Definitions and properties

Jacobi fields can be obtained in the following way: Take a smooth one parameter family of geodesics <math>\gamma_\tau<math> with <math>\gamma_0=\gamma<math>, then

<math>J(t)=\partial\gamma_\tau(t)/\partial \tau|_{\tau=0}<math>

is a Jacobi field.

A field J is a Jacobi field if and only if it satisfies the Jacobi equation:

<math>\frac{D^2}{dt^2}J(t)+R(J(t),\dot\gamma(t))\dot\gamma(t)=0,<math>

where D denotes the Levi-Civita connection, R the curvature tensor and <math>\dot\gamma(t)=d\gamma(t)/dt<math>. On a complete Riemannian manifold, for any Jacobi field there is a family of geodesics <math>\gamma_\tau<math> describing the field (as in the preceding paragraph).

The Jacobi equation is a linear second order ordinary differential equation; in particular, values of <math>J<math> and <math>\frac{D}{dt}J<math> at one point of <math>\gamma<math> define uniquely the Jacobi field. Further, the sum of Jacobi fields on a given geodesic is again a Jacobi field.

As trivial examples of Jacobi fields one can consider <math>\dot\gamma(t)<math> and <math>t\dot\gamma(t)<math>. These correspond respectively to the following families of reparametrisations: <math>\gamma_\tau(t)=\gamma(\tau+t)<math> and <math>\gamma_\tau(t)=\gamma((1+\tau)t)<math>.

Any Jacobi field field <math>J<math> can be represented in a unique way as a sum <math>T+I<math>, where <math>T=a\dot\gamma(t)+bt\dot\gamma(t)<math> is a linear combination of trivial Jacobi fields and <math>I(t)<math> is orthogonal to <math>\dot\gamma(t)<math>, for all <math>t<math>. The field <math>I<math> then corresponds to the same variation of geodesics as <math>J<math>, only with changed parametrizations.

Motivating example

On a sphere, the geodesics through the North pole are great circles. Consider two such geodesics <math>\gamma_0<math> and <math>\gamma_\tau<math> with natural parameter, <math>t\in [0,\pi]<math>, separated by an angle <math>\tau<math>. The geodesic distance <math>d(\gamma_0(t),\gamma_\tau(t))<math> is

<math>d(\gamma_0(t),\gamma_\tau(t))=\sin^{-1}\bigg(\sin t\sin\tau\sqrt{1+\cos^2 t\tan^2(\tau/2)}\bigg).<math>

Computing this requires knowing the geodesics. The most interesting information is just that

<math>d(\gamma_0(\pi),\gamma_\tau(\pi))=0<math>, for any <math>\tau<math>.

Instead, we can consider the derivative with respect to <math>\tau<math> at <math>\tau=0<math>:

<math>\frac{\partial}{\partial\tau}\bigg|_{\tau=0}d(\gamma_0(t),\gamma_\tau(t))=|J(t)|=\sin t.<math>

Notice that we still detect the intersection of the geodesics at <math>t=\pi<math>. Notice further that to calculate this derivative we do not actually need to know <math>d(\gamma_0(t),\gamma_\tau(t))<math>, rather, all we need do is solve the equation <math>y''+y=0<math>, for some given initial data.

Jacobi fields give a natural generalization of this phenomenon to arbitrary Riemannian manifolds.

Solving the Jacobi equation

Let <math>e_1(0)=\dot\gamma(0)/|\dot\gamma(0)|<math> and complete this to get an orthonormal basis <math>\big\{e_i(0)\big\}<math> at <math>T_{\gamma(0)}M<math>. Parallel transport it to get a basis <math>\{e_i(t)\}<math> all along <math>\gamma<math>. This gives an orthonormal basis with <math>e_1(t)=\dot\gamma(t)/|\dot\gamma(t)|<math>. The Jacobi field is <math>J(t)=y^k(t)e_k(t)<math> and thus

<math>\frac{D}{dt}J=\sum_k\frac{dy^k}{dt}e_k(t),\quad\frac{D^2}{dt^2}J=\sum_k\frac{d^2y^k}{dt^2}e_k(t),<math>

and the Jacobi equation can be rewritten as a system

<math>\frac{d^2y^k}{dt^2}+|\dot\gamma|^2\sum_j y^j(t)\langle R(e_j(t),e_1(t))e_1(t),e_k(t)\rangle=0<math>

for each <math>k<math>. This way we get a linear ordinary differential equation (ODE). Since this ODE has smooth coefficients we have that solutions exist for all <math>t<math> and are unique, given <math>y^k(0)<math> and <math>{y^k}'(0)<math>, for all <math>k<math>.

Examples

Consider a geodesic <math>\gamma(t)<math> with parallel basis frame <math>e_i(t)<math>, <math>e_1(t)=\dot\gamma(t)/|\dot\gamma|<math>, constructed as above.

In Euclidean space (as well as for spaces of constant zero curvature) Jacobi fields are simply those fields linear in <math>t<math>.

For Riemannian manifolds of constant negative curvature <math>-k^2<math>, any Jacobi field is a linear combination of <math>\dot\gamma(t)<math>, <math>t\dot\gamma(t)<math> and <math>\exp(\pm kt)e_i(t)<math>, where <math>i>1<math>.

For Riemannian manifolds of constant positive curvature <math>k^2<math>, any Jacobi field is a linear combination of <math>\dot\gamma(t)<math>, <math>t\dot\gamma(t)<math>, <math>\sin(kt)e_i(t)<math> and <math>\cos(kt)e_i(t)<math>, where <math>i>1<math>.

References

[do Carmo] M. P. do Carmo, Riemannian Geometry, Universitext, 1992.

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools