Heaviside step function

Missing image
Dirac_distribution_CDF.png
The Heaviside step function, using the half-maximum convention

The Heaviside step function, sometimes called the unit step function and named in honor of Oliver Heaviside, is a discontinuous function whose value is zero for negative argument and one for positive argument:

<math>u(x)=\left\{\begin{matrix} 0 & : & x < 0 \\ 1 & : & x > 0 \end{matrix}\right. <math>

The function is used in the mathematics of control theory and signal processing to represent a signal that switches on at a specified time and stays switched on indefinitely.

It is the cumulative distribution function of a random variable which is almost surely 0. (See constant random variable.)

The Heaviside function is the integral of the Dirac delta function.

<math> u(x) = \int_{-\infty}^x { \delta(t)} dt <math>

The value of u(0) is occasionally of disputed value. Some writers give u(0) = 0, some u(0) = 1. u(0) = 0.5 is the most consistent choice used, since it maximizes the symmetry of the function and becomes completely consistent with the sgn() function. This makes for a more general definition:

<math> u(x) = \left\{ \begin{matrix} 0 & : & x < 0 \\ \frac{1}{2} & : & x = 0 \\ 1 & : & x > 0 \end{matrix} \right. <math>
<math> u(x) = \frac{1}{2} \left ( 1 + \sgn(x) \right ) <math>

To remove the ambiguity of which value to use for u(0), a subscript specifying which value may be used:

<math> u_n(x) = \left\{ \begin{matrix} 0 & : & x < 0 \\ n & : & x = 0 \\ 1 & : & x > 0 \end{matrix} \right. <math>

Often an integral representation of the step function is useful:

<math>u(x)=\lim_{ \epsilon \to 0} -{1\over 2\pi i}\int_{-\infty}^\infty {1 \over \tau+i\epsilon} e^{-i x \tau} d\tau <math>

Related topics

da:Heaviside trinfunktion de:Heaviside-Funktion fr:Fonction d'étape de Heaviside ja:ヘヴィサイドの階段関数 pl:Funkcja skokowa Heaviside'a

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools