Genetic programming
|
Genetic programming (GP) is an automated methodology inspired by biological evolution to find computer programs that best perform a user-defined task. It is therefore a particular machine learning technique that uses an evolutionary algorithm to optimize a population of computer programs according to a fitness landscape determined by a program's ability to perform a given computational task. The first experiments with GP were reported by Stephen F. Smith (http://www-2.cs.cmu.edu/~sfs/) (1980) and Nichael L. Cramer (http://www.sover.net/~nichael/) (1985), as described in the famous book Genetic Programming: On the Programming of Computers by Means of Natural Selection by John Koza (1992).
Computer programs in GP can be written in a variety of programming languages. In the early (and traditional) implementations of GP, program instructions and data values were organized in tree-structures, thus favoring the use of languages that naturally embody such a structure (an important example pioneered by Koza is Lisp). Other forms of GP have been suggested and successfully implemented, such as the simpler linear representation which suits the more traditional imperative languages [see, for example, Banzhaf et al. (1997)]. The commercial GP software Discipulus (http://www.aimlearning.com), for example, uses linear genetic programming combined with machine code language to achieve better performance. Also, the freeware MicroGP (http://www.cad.polito.it/research/microgp.html) tool uses linear genetic programming to generate assembly programs.
GP is very computationally intensive and so in the 1990s it was mainly used to solve relatively simple problems. However, more recently, thanks to various improvements in GP technology and to the well known exponential growth in CPU power, GP has started delivering a number of outstanding results. At the time of writing, nearly 40 human-competitive (http://www.genetic-programming.com/humancompetitive.html) results have been gathered, in areas such as quantum computing, electronic design, game playing, sorting, searching and many more. These results include the replication or infringement of several post-year-2000 inventions, and the production of two patentable new inventions.
Developing a theory for GP has been very difficult and so in the 1990s genetic programming was considered a sort of pariah amongst the various techniques of search. However, after a series of breakthroughs in the early 2000s, the theory of GP has had a formidable and rapid development. So much so that it has been possible to build exact probabilistic models of GP (schema theories and Markov chain models) and to show that GP is more general than, and in fact includes, genetic algorithms.
Genetic Programming techniques have now been applied to evolvable hardware as well as computer programs.
Bibliography
- Banzhaf, W., Nording, P., Keller, R.E., Francone, F.D. (1997), Genetic Programming: An Introduction: On the Automatic Evolution of Computer Programs and Its Applications, Morgan Kaufmann
- Cramer, Nichael Lynn (1985), "A representation for the Adaptive Generation of Simple Sequential Programs (http://www.sover.net/~nichael/nlc-publications/icga85/index.html)" in Proceedings of an International Conference on Genetic Algorithms and the Applications, Grefenstette, John J. (ed.), CMU
- Koza, J.R. (1990), Genetic Programming: A Paradigm for Genetically Breeding Populations of Computer Programs to Solve Problems, Stanford University Computer Science Department technical report STAN-CS-90-1314 (http://www.genetic-programming.com/jkpdf/tr1314.pdf). A thorough report, possibly used as a draft to his 1992 book.
- Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press
- Koza, J.R. (1994), Genetic Programming II: Automatic Discovery of Reusable Programs, MIT Press
- Koza, J.R., Bennett, F.H., Andre, D., and Keane, M.A. (1999), Genetic Programming III: Darwinian Invention and Problem Solving, Morgan Kaufmann
- Langdon, W. B., Poli, R. (2001), Foundations of Genetic Programming, Springer-Verlag
- Smith, S.F. (1980), A Learning System Based on Genetic Adaptive Algorithms, PhD dissertation (University of Pittsburgh)
External links
- Genetic Programming FAQ (http://www.cs.ucl.ac.uk/research/genprog/gp2faq/gp2faq.html)
- The Hitch-Hiker's Guide to Evolutionary Computation (http://www.faqs.org/faqs/ai-faq/genetic/part1/preamble.html)
- John Koza's Genetic Programming Site (http://www.genetic-programming.com)
- Juergen Schmidhuber's GP Site, with pre-Koza GP papers (1987) (http://www.idsia.ch/~juergen/gp.html)
- Bill Langdon's GP bibliography (http://www.cs.bham.ac.uk/~wbl/biblio/README.html)
- Meta-Genetic Programming Site (http://www.helpmefigurethisout.com)de:Genetische Programmierung