Euclidean distance

In mathematics the Euclidean distance or Euclidean metric is the "ordinary" distance between the two points that one would measure with a ruler, which can be proven by repeated application of the Pythagorean theorem. By using this formula as distance, Euclidean space becomes a metric space (even a Hilbert space).

Contents

Definition

The Euclidean distance for two points x = (x1,...,xn) and y = (y1,...,yn) in Euclidean n-space is defined as

<math>d(x,y):=\sqrt{(x_1-y_1)^2 + (x_2-y_2)^2 + \cdots + (x_n-y_n)^2} = \sqrt{\sum_{i=1}^n (x_i-y_i)^2}<math>

Two-dimensional distance

For two 2D points P=[px,py] and Q=[qx,qy], the distance is computed as

<math>\sqrt{(px-qx)^2 + (py-qy)^2}<math>

Approximation

A fast approximation of 2D distance based on an octagonal boundary can be computed as follows. Let dx = |px-qx| (absolute value) and dy = |py-qy|. If dydx, approximated distance is 0.41dx+0.941246dy. (If dy<dx, swap these values.) The difference from the exact distance is between -6% and +3%; more than 85% of all possible differences are between -3% to +3%.

Missing image
Fasteuclid.png
image:fasteuclid.png

The following Maple code implements this approximation and produces the plot on the right, with a true circle in black and the octagonal approximate boundary in red:

fasthypot :=
  unapply(piecewise(abs(dx)>abs(dy), 
                    abs(dx)*0.941246+abs(dy)*0.41,
                    abs(dy)*0.941246+abs(dx)*0.41),
          dx, dy):
hypot := unapply(sqrt(x^2+y^2), x, y):
plots[display](
  plots[implicitplot](fasthypot(x,y) > 1, 
                      x=-1.1..1.1, 
                      y=-1.1..1.1,
                      numpoints=4000),
  plottools[circle]([0,0], 1),
  scaling=constrained,thickness=2
);

Other approximations exist as well. They generally try to avoid the square root, which is an expensive operation in terms of processing time, and provide various error:speed ratio. Using the above notation, dx + dy - 2×min(dx,dy) yields error in interval 0% to 12%. (Attributed to Alan Paeth.)

Three-dimensional distance

For two 3D points P=[px,py,pz] and Q=[qx,qy,qz], the distance is computed as

<math>\sqrt{(px-qx)^2 + (py-qy)^2 + (pz-qz)^2}<math>

See also

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools