Butterworth filter

The Butterworth filter is one of the most basic electronic filter designs. It is designed to have a frequency response which is as flat as mathematically possible in the passband.

It was first described by the British engineer S. Butterworth, (who specifically refused to publish his first name; it is thought to be Stephen) in his paper "On the Theory of Filter Amplifiers", Wireless Engineer (also called Experimental Wireless and the Radio Engineer), vol. 7, 1930, pp. 536-541.

The most basic Butterworth filter is the standard first-order low-pass filter, which can be modified into a high-pass filter, or placed in series with others to form band-pass and band-stop filters, and higher order versions of these.

Missing image
Butterworth_response.png
The frequency response of a first-order Butterworth filter


The frequency response of a first-order Butterworth low-pass filter

As mentioned, the frequency response of the Butterworth filter is maximally flat (i.e. no ripples) in the passband, and a frequency response which slopes off towards zero in the stopband. When viewed on a logarithmic Bode plot, the cut band slopes off linearly towards negative infinity. For a first-order filter, the cut line slopes off at -6 dB per octave, for second-order, -12 dB per octave, etc. All first-order filters are actually the same filter and so have the same frequency response. The Butterworth is the only filter that maintains this same shape for higher orders (just with a steeper decline in the stopband). Other varieties of filters (Bessel, Chebyshev, elliptic) have different shapes at higher orders.

The magnitude of the frequency response of an n order filter can be defined mathematically as:

<math> \left | G(j \omega) \right | = {1 \over \sqrt{ 1 + (\omega / \omega_H) ^ {2 n}} } <math>

where G is the gain of the filter, n is the order of the filter, ω is the frequency of the signal in radians and <math>\omega_H<math> is the -3dB frequency.

Normalising the expression (thus putting <math>\omega_H = 1<math>), the expression becomes:

<math> \left | G(j \omega) \right | = {1 \over \sqrt{ 1 + \omega ^ {2 n}} } <math>

Compared with a Chebyshev Type I/Type II filter or an elliptic filter, the Butterworth filter will require a higher order to implement, assuming all filters are designed to meet the same specifications. A Butterworth filter will also have the most linear phase response in the passband compared to the Chebyshev Type I/Type II and elliptic filters.de:Butterworthfilter it:Filtro Butterworth

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools