Bell polynomials

In combinatorial mathematics, the Bell polynomials, named in honor of Eric Temple Bell, are given by

<math>B_{n,k}(x_1,x_2,\dots,x_{n-k+1})<math>
<math>=\sum{n! \over j_1!j_2!\cdots j_{n-k+1}!}

\left({x_1\over 1!}\right)^{j_1}\left({x_2\over 2!}\right)^{j_2}\cdots\left({x_{n-k+1} \over (n-k+1)!}\right)^{j_{n-k+1}},<math>

the sum extending over all sequences j1, j2, j3, ..., jnk+1 of positive integers such that

<math>j_1+j_2+\cdots = k\quad\mbox{and}\quad j_1+2j_2+3j_3+\cdots=n.<math>
Contents

"Complete" Bell polynomials

The sum

<math>B_n(x_1,\dots,x_n)=\sum_{k=1}^n B_{n,k}(x_1,x_2,\dots)<math>

is sometimes called the nth complete Bell polynomial. That polynomial satisfies the following identity

<math>B_n(x_1,\dots,x_n) = \det\left[\begin{matrix}x_1 & {n-1 \choose 1} x_2 & {n-1 \choose 2}x_3 & {n-1 \choose 3} x_4 & {n-1 \choose 4} x_5 & \cdots & \cdots & x_n \\ \\

-1 & x_1 & {n-2 \choose 1} x_2 & {n-2 \choose 2} x_3 & {n-2 \choose 3} x_4 & \cdots & \cdots & x_{n-1} \\ \\ 0 & -1 & x_1 & {n-3 \choose 1} x_2 & {n-3 \choose 2} x_3 & \cdots & \cdots & x_{n-2} \\ \\ 0 & 0 & -1 & x_1 & {n-4 \choose 1} x_2 & \cdots & \cdots & x_{n-3} \\ \\ 0 & 0 & 0 & -1 & x_1 & \cdots & \cdots & x_{n-4} \\ \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & & \vdots \\ \\ 0 & 0 & 0 & 0 & 0 & \cdots & -1 & x_1 \end{matrix}\right]<math>

Combinatorial meaning

If the integer n is partitioned into a sum in which "1" appears j1 times, "2" appears j2 times, and so on, then the number of partitions of a set of size n that collapse to that partition of the integer n when the members of the set become indistinguishable is the corresponding coefficient in the polynomial.

Examples

For example, we have

<math>B_{6,2}(x_1,x_2,x_3,x_4,x_5)=6x_5x_1+15x_4x_2+10x_3^2<math>

because there are

6 ways to partition of set of 6 as 5+1,
15 ways to partition of set of 6 as 4+2, and
10 ways to partition a set of 6 as 3+3.

Similarly,

<math>B_{6,3}(x_1,x_2,x_3,x_4)=15x_4x_1^2+60x_3x_2x_1+15x_2^3<math>

because there are

15 ways to partition a set of 6 as 4+1+1,
60 ways to partition a set of 6 as 3+2+1, and
15 ways to partition a set of 6 as 2+2+2.

Stirling numbers and Bell numbers

The value of the Bell polynomial Bn,k(x1,x2,...) when all xs are equal to 1 is a Stirling number of the second kind:

<math>B_{n,k}(1,1,\dots)=S(n,k)=\left\{\begin{matrix} n \\ k \end{matrix}\right\}.<math>

The sum

<math>\sum_{k=1}^n B_{n,k}(1,1,1,\dots)<math>

is the nth Bell number, which is the number of partitions of a set of size n.

Where do Bell polynomials occur?

Composition of formal power series and Fàa di Bruno's formula

A power-series version of Faà di Bruno's formula may be stated using Bell polynomials as follows. Suppose

<math>f(x)=\sum_{n=1}^\infty {a_n \over n!} x^n \qquad

\mathrm{and} \qquad g(x)=\sum_{n=1}^\infty {b_n \over n!} x^n.<math>

Then

<math>g(f(x)) = \sum_{n=1}^\infty

{\sum_{k=1}^{n} b_k B_{n,k}(a_1,\dots,a_{n-k+1}) \over n!} x^n.<math>

The complete Bell polynomials appear in the exponential of a formal power series:

<math>\exp\left(\sum_{n=1}^\infty {a_n \over n!} x^n \right)

= 1 + \sum_{n=1}^\infty {B_n(a_1,\dots,a_n) \over n!} x^n.<math>

See also exponential formula.

Moments and cumulants

The sum

<math>B_n(\kappa_1,\dots,\kappa_n)=\sum_{k=1}^n B_{n,k}(\kappa_1,\dots,\kappa_{n-k+1})<math>

is the nth moment of a probability distribution whose first n cumulants are κ1, ..., κn. In other words, the nth moment is the nth complete Bell polynomial evaluated at the first n cumulants.

Representation of polynomial sequences of binomial type

For any sequence a1, a2, a3, ... of scalars, let

<math>p_n(x)=\sum_{k=1}^n B_{n,k}(a_1,\dots,a_{n-k+1}) x^k.<math>

Then this polynomial sequence is of binomial type, i.e. it satisfies the binomial identity

<math>p_n(x+y)=\sum_{k=0}^n {n \choose k} p_k(x) p_{n-k}(y)<math>

for n ≥ 0. In fact we have this result:

Theorem: All polynomial sequences of binomial type are of this form.

If we let

<math>h(x)=\sum_{n=1}^\infty {a_n \over n!} x^n<math>

taking this power series to be purely formal, then for all n,

<math>h^{-1}\left( {d \over dx}\right) p_n(x) = n p_{n-1}(x).<math>

References

  • Eric Temple Bell, Partition Polynomials, Annals of Mathematics, volume 29, 1927, pages 38 - 46.
Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools