Weil restriction

In mathematics, specifically the theory of algebraic groups, Weil restriction is a functor allowing one to pass from an algebraic group G over a field L to another one, RG, over a subfield K. The idea is that the group of points G(L) of G over L should be deemed RG(K).

For example taking L = C to be the complex number field, and K = R the real number field, we can apply Weil restriction to the multiplicative group

GL1

to get

RC/RGL1,

which is a two-dimensional algebraic group. It consists of 2×2 matrices of the shape that is given by the action of a+bi on the basis {1,i} of C over R:

<math>\begin{bmatrix} a & b \\ -b & a \end{bmatrix}.
      <math>

This group is an algebraic torus, and is applied in Hodge theory, where its linear representations are Hodge structures.

Note that the construction is of an algebraic variety, not just a set of points: a group object, not simply a group. To say this more formally, we should identify RG as a right adjoint. There is an extension of scalars

EL/K

functor to which it is adjoint. For any K-algebra A we have

EL/K(A)

the tensor product of A with L over K (as K-vector spaces), which is made into an L-algebra using the existing ring product in A and in L. Then it is almost true to say that RL/K is the right adjoint to EL/K.

To be completely accurate, we should do this: an algebraic group H over K is such that for a commutative K-algebra B, H(B) is

Hom (Spec(B), H)

in a suitable category (of schemes over Spec(K)). Another way of putting it is that Spec makes the category of commutative K-algebras into its opposite. Therefore the actual adjunction relation is of the type

Hom(ESpec(B), G) = Hom(Spec(B), RG)

where on the left side we are in the opposite of the category of commutative L-algebras, on the right side in the opposite of the category of commutative K-algebras, and E becomes the fiber product over Spec(K) with Spec(L). This is a complete definition in the case that G is an affine algebraic group.

The case where G is an abelian variety is also of importance, though. It is one non-trivial way to construct higher-dimensional abelian varieties from elliptic curves, for example. Weil restriction multiplies dimension by the degree [L:K], as one can compute with the tangent space (in characteristic 0).

The Weil restriction is essential for the classification of algebraic groups over fields that are not algebraically closed.

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools